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Multi-thread impact on the performance of Monte
Carlo based algorithms for self-localization of

robots using RGBD sensors
Francisco Martı́n, Vicente Matellán and Francisco J. Lera

Abstract—Using information from RGBD sensors requires
huge amount of processing. To use these sensors improves the
robustness of algorithms for object perception, self-localization
and, in general, all the capabilities to be performed by a robot
to improve its autonomy. In most cases, these algorithms are
not computationally feasible using single-thread implementations.
This paper describes two multi thread strategies proposed for self
localize a mobile robot in a known environment using information
from a RGBD sensor. The experiments will show the benefits
obtained when different numbers of threads are compared, using
different approaches: a pool of threads and creation/destruction
scheme. The work has been carried out on a Kobuki mobile
robot in the environment of the RoCKiN competition, similar to
RoboCup@home.

Index Terms—localization, 3D maps, RGBD sensors, octree,
Multi-threading

I. INTRODUCTION

We are interested in developing software for robots that help
people in domestic environments. This software consists of
many processes that must be running at once on board an
autonomous robot. To carry out household tasks, a robot must
perceive objects and people, and be able to interact properly
with both. In addition, robots navigate along their environment
to perform these tasks, so it is important to have a reliable
navigation.

In recent years, 3D sensors are becoming very popular as
standard equipment in mobile robots. Nevertheless, in most
cases they don’t take advance of this information. Maps
usually describe 2D information, and created either directly
from lasers 2D or transforming their RGBD information to
2D distances. In many works, the software used is based on
this idea [1]. While the laser is a very precise sensor, we think
they are missing the 3D capabilities of RGBD sensors, which
could be very beneficial in environments with symmetries in
2D, but with a rich 3D structure and color. Although the use
of RGBD data can improve the capabilities of the robot, it
presents a performance problem. The amount of information
from this sensor is twice that of a normal image, since each
pixel also includes spatial information. The processing of this
cloud of points is not easy because usually requires spatial
transformations and distance calculations.
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To make a robotic system that requires so much computing
resources feasible, it is necessary to pay attention to how the
processes that make up the system are executed. Usually, each
of these processes usually correspond to a kernel process,
delegating the scheduling to the operating system or libraries.
Sometimes a single process performs very heavy computation
that can not be addressed as a pipeline. Processing point
clouds RGBD sensor is an example of this. These sensors are
becoming increasingly popular because they provide useful
information for reconstruction of objects, mapping and, in
general, any process that benefits from having a 3D struc-
ture with color. The processing of these clouds of points is
computationally expensive. PCL library [2] has become the
standard way to handle these point clouds. In addition to its
integration with ROS, it offers a lot of tools for segmentation,
recognition, feature extraction and correlation points, among
others. Many of the functions have a GPU version, which
speeds up the processing of these clouds. On other occasions,
functions as point clouds searches have not a GPU version
available, being a real bottleneck in many applications. In
addition, GPU programming requires a low-level programming
in which most of the available libraries for scientific computing
are not available.

Using multiple threads is a strategy to improve the efficiency
of a process with large computing requirements. The optimal
number of threads depends on the number of cores of the
processor that is running the software. The ideal is to distribute
the work in a number of threads similar to the number of
cores. Current conventional computers have multiple cores
available, and they are not always completely exploited. Most
of the implementations use a single thread approach for all the
computation.

To validate our research in this field, we participate
in robotic competitions that simulate a home environment:
RoCKiN [4] and RoboCup@home [3]. The competitions have
proved to be a good tool to advance robotics. They present
a common scenario where different groups can evaluate and
compare their research using standardized tests which can
measure the performance of each proposal. In this competition
the robot must develop a series of activities to help a person
with a degree of dependence in their home environment. These
missions include to receive and recognize visitors, to find
objects around the house or taking a glass of water from the
kitchen to the bedroom. It is also important that the robot share
its environment with humans safely.

In this paper we present two multi thread strategies to
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perform the self localization based on Monte Carlo algorithm
[5] using RGBD information intensively. We will demonstrate
how a multi-thread approach can make this approach feasible
in real time. In order to distribute computing in multiple
threads, we have developed two strategies: a pool of threads
and threads that are created and destroyed. We will test both
strategies with different numbers of threads, from 1 to twice
the cores available. The direct consequence is an improvement
in the response time of the self localization algorithm, and thus
the execution frequency. The higher this frequency, the greater
the speed at which a robot can move safely, thereby improving
the time in which a robot can reach from one position to
another in the environment.

The remainder of this paper is structured as follows. After
discussing related work in the following section, we will
briefly present the self localization algorithm to be improved
in section III. The main contribution of this paper, the multi
thread approach will be presented in section IV. In Section
V we then will present experimental results of the multi
thread comparison. Finally, in section VI we will present the
conclusions and future works.

II. RELATED WORK

The organization of the execution of software is critical
in robot programming. In a system that requires real-time
characteristics, where there are deadlines for performing op-
erations. If these deadlines are not met, the result can not be
valid, or even disastrous for operation of the robot. Developing
robotic systems with such characteristics have led to several
works [6][7] focused on systems and methodologies whose
emphasis is real time. In many cases, the real-time conditions
are applied to the access to sensors and actuators [8][9], while
these conditions are relaxed for rest of the software.

In other cases, soft real-time conditions are enough. These
approaches uses a graceful degradation, as in the case of Bica
[10], where one thread performs all the computation of the
robot. Each module executes at its own frequency, forming an
activation tree representing its execution dependencies. The
execution is performed in cascade, ensuring the execution
frequency of each one. If a process exceeds its time slice,
the system degrades delaying the execution of others, doing
their best to recover their frequency. Our proposal is capable
of performing a similar degradation, but taking advantage of
multi-core processors of current architectures. Our proposal
manages to avoid concurrency problems, but at the cost of a
less generalizable solution.

ROS [11][1] is currently the standard in robot control
systems. A robotic application in ROS is composed by several
interconnected nodes. Drivers for accessing the robot sensors
and actuators are implemented using nodes, that provide a
common interface by standard messages. Each node has a
thread for the user and others responsible of managing commu-
nications. There are no race conditions between these threads
because it is explicitly synchronized when data handlers of
these message queues are executed and when the user code is
executed. From the point of view of the user, the nodes run
in a single thread. The way to balance the computation load

is to design the complete process as a pipeline of ROS nodes.
The operating system scheduler distributes the execution of
the nodes in the available resources.

The processing design presented in this paper would have
been implemented in ROS creating several ROS nodes that
divide the work. Besides the problems of synchronization be-
tween processes, the communication delay makes not feasible
this way. Our proposal is running on a node ROS, but creating
threads inside it in a very controlled way.

A very effective way to speed up processes that require
large amounts of computing is to use the power offered by
the Graphic Processor Unit (GPU) [12]. These components
contain many computing units that offer perform extensive
computations in parallel [13]. This approach is useful when
the same operation is applied to large amount of input data.
GPU parallelization techniques have been used in expensive
processes, like training neural networks [14][15] or Neural
Gas Accelerated [16][17]. RGBD data processing requires
great computing power, so the GPU parallelization techniques
have been used extensively in this field [18]. In [20], a
SLAM algorithm that uses information from a sensor RGBD is
presented. In this paper, it uses a GPU parallelization to make
an algorithm real-time properties. Our approach is different
because we speed up the process using multiple threads on the
CPU, instead of a GPU. On one hand, we get less performance,
but on the other hand, it allows the use of standard libraries.

The problem of self localization of a mobile robot has
received great attention from the start of the Mobile Robotics.
Self localization methods estimate the most probable position
of a robot in its environment using the information from its
sensors and a from a map. Kalman Filter [21][22][23][24] is
one of the first widely used estimator for nonlinear systems.
This method maintains a gaussian state estimation of the
robot position, and its associated uncertainty. This method
has difficulties to start if the initial position is unknown, or
when kidnapping situations occur. There are works that try
to overcome these limitations, maintaining a population of
extended Kalman filters [25].

Other popular methods are called Markovian. These meth-
ods represent the environment in states that may correspond to
a regular grid [26] or irregular regions [27][28]. The probabil-
ity associated to each state is updated using Bayes’ Theorem,
establishing a priori probability of possible observations in
each state. The main advantage of this method is that it is
global. This means that it can maintain multiple hypotheses
about the position of the robot and it can recover from
situations of kidnappings or unknown initial positions. The
main disadvantage of this method is its high computational
cost when high precision is required, or when the environ-
ment is very extensive. In [29] this problem is addressed by
dynamically varying the number of cells and the size of the
grid, but this complicates how the probability of some states
are updated when the robot moves.

Currently, the most widely used methods are based on par-
ticle filters [5][30][31], also called Monte Carlo method [32].
This method is based on sampling a probability distribution
by a set of hypotheses, called particles. Those particles most
likely will remain in the population, while the less likely ones
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Fig. 1. Map organization in an octree.

will be replaced by others. The robot position is determined
by the accumulation of particles with high probability. This
method is independent of the size of the environment, and
has been used in many applications [33][34]. Furthermore,
this method is very flexible and allows many optimizations.
In [35], new particles created in each cycle are not generated
at random, but taking into account the latest perceptions. It can
use a variety of perceptions, achieving a very robust method
in highly dynamic environments such as [36] where applied
to legged robot in robot soccer matches.

Neither there are enough jobs on using 3D maps for self
location. In [37], they use RGBD information, but to find 2D
planes, using a 2D map. In [38], the navigation of a robot with
legs is made using a 3D map of the environments is made,
although the self location information is performed using only
a laser distance. Our approach takes full advantage of the
position information and color offered by the RGBD sensor
and a 3D map of colored dots.

III. SELF LOCALIZATION ALGORITHM

A. Map

A map contains the knowledge of the environment that the
robot uses to self localize. In our work we use RGBD sensors
to create the map, so that our map is made up of colored 3D
points. A map M is a set of points with a position and a color
in the HSV color space, (x, y, z, h, s, v). This set of points is
structured as an octree [39], as shown in Figure 1. It is a tree
structure in which each node subdivide the space into eight
octants. Using an octree, it is efficient [40] to calculate the
points in an area, or the neighbors of a particular point.

In general, building an octree has a complexity
O(Nlog(N)). Searching on a map has a complexity
of O(log(N)) in the best case. The search operation
find(M, p, R) returns a set of points MS ⊆ M starting
from a point p and radius R, in which,

find(M, p, R) → MS, dist(p, pj) < R, ∀pj ∈ MS (1)

Moreover, this set is ordered, so,

dist(p, pn) < dist(p, pm), ∀pn, pm ∈ MS, n < m (2)
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Fig. 2. Monte Carlo Algorithm scheme.

B. RGBD Monte Carlo localization

The state of a robot s can be seen as a displacement
(x, y, z) and a rotation (φ, θ, ψ), which form an invertible
transformation from the origin of coordinates on the map to
the robot. In the case of wheeled robot, notation position can
be simplified to (x, y, φ).

To estimate the robot position, we will use a Monte Carlo
algorithm, whose scheme is shown in Figure 2. This algorithm
samples the probability distribution bel(ST ) that represents
the position of the robot as a set St of hypotheses about the
position of the robot ST , also called particles,

St = {s1t , s2t , · · · , sNt } (3)

each element of St is a hypothesis ST associated to an
probability so

sit ∼ p(sit|z1:t, u1:t) (4)

The accumulation of particles in a region of the environment
indicates the position of the robot.

Initially, S0 is set depending on the a priori knowledge that
we have about the position of the robot. If we start from a
known state sinitial, sn0 = sinitial, ∀sn0 ∈ S0. This problem is
usually called tracking, because the problem focuses on cor-
recting the errors in the odometry using sensory information.
On the other hand, If sinitial is unknown, bel(S) is uniformly
distributed on the set of possible states of S . This problem
is more complex, and is called global self location problem,
where we have to determine the position of the robot from a
situation of complete ignorance. This method is effective to
solve both problems.

In the prediction phase, ut represents the transformation
(rotation and translation) of st−1 to st measured by the
proprioceptive sensors of the robot. This is the expected
displacement depending on the control commands generated
at each instant t. The application to a state st−1 produces the
prediction of the state a priori st, or st.

st = st−1 ∗ ut (5)

In the prediction phase, particles in St−1 are updated using
the transformation ut, applying a noise nt so
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nt ∼ N(0, σ2
u) (6)

that is a gaussian error that is expected to be ut, which
follows a normal distribution. In wheeled robots, where this
approach has been applied, the standard deviation σ2

u is low,
since the odometry information is very reliable.

In the correction phase, we update Pt to St using the
perception Zt. Under normal conditions, Zt can be composed
for nearly 300000 elements. Such amount of information
makes computationally not feasible to use this full set to
calculate the weight of each particle in St. The number of
times we calculate p(sit|zjt ), ∀sit ∈ St, ∀zjt ∈ Zt can be
640 × 480 points ∗ 200 particles = 61440000. The calcu-
lation of p(sit|zjt ) involves comparing each point zjt with its
neighbors in the map M, which increases the computational
requirements of the whole process. In addition, we want run
our algorithm several times per second, ideally between [10-
20]Hz, to be used by a navigation algorithm.

To make possible the execution of our algorithm to this
frequency, we do not use the full perception Zt, but randomly
select a subset Z ′

t of Zt, so |Z ′
t| < N , where N ∈ [100−500].

This range of values facilitates the execution of the algorithm
at an acceptable rate, and it is significant enough to update the
probability of St, as will be shown in experimentation section.

For each element of Pt we calculate a weight wi, which
corresponds to a probability given the set of perceptions Z ′

t.

wi =
1

|St|

|St|∑
i=1

|Z′
t|∑

j=1

p(sit|zjt ) (7)

p(sit|zjt ) =
p(zjt |sit) ∗ p(sit)

p(zjt )
(8)

Considering that sit represents a transformation from the
origin of the map, we can calculate the position of zjt in the
map.

l = zjt ∗ sit
−1

(9)

As we saw in the section III-A, it is possible to obtain
a set MS using the function find(M, p, R). The probability
p(zjt |sit) is calculated from similarity of these two points based
on the color difference and in the distance in position.

In the last part of the algorithm, we create a new set St

from St−1 after incorporating ut and Zt. This phase is known
as resampling. Figure 3 shows this process. St is represented
at the top of this figure as an ordered vector, where the color
indicates the weight wi of each particle sit in St. Particles
whose wi is higher are placed at the beginning (in green) and
the least likely (in red) are placed at the end.

In our approach we perform resampling in two steps. 50% of
the most likely particles remain of St to St, while the other 50
% are removed. Next, these particles are replaced by others
generated from the existing ones in St, initialized to wi =
1

|St| . In our approach, we use the first 25% of the most likely
particles to perform the generation of the new ones.

Section A Section B Section C

Sort

Fig. 3. Resampling of St.

Through this process, in each cycle the less likely particles
are eliminated, and are replaced by others in positions where
it is more likely to be robot. This method is effective to solve
the problem of tracking, where there is already a set of initial
particles is supposed to be close to the actual position of the
robot. The new particles will correct errors in ut with the
information from sensory Zt.

IV. MULTI-THREAD APPROACH

The workflow of the Monte Carlo algorithm is an iterative
pipeline, as shown in Figure 2. In the prediction phase, ut

applies to all particles sit ∈ S�−∞, which is not a heavy
workload. In contrast, the correction phase needs many more
computational resources. For every particle sit ∈ S� a test is
performed using the perception points Z ′

t ⊂ Zt. This test has
several steps:

1) To apply to z‘it ∈ Z ′
t the transformation that sit repre-

sents, obtaining li.
2) For each point li, we make the set MS using the

find(M, li, R) function, where |MS| ≤ 20. One
reason to use threads instead of GPU is this function
find, which is the one that consumes more resources.
Without a real GPU implementation it becomes in the
real bottleneck in this processing.

3) To accumulate the probability calculated from compar-
ing the distance metric and color betweenz‘it and every
element in MS .

This amount of work is divided into a set of threads T , as
shown in Figure 4. It is assigned a subset of S�−∞ to each
thread, to apply the phases of the Monte Carlo algorithm.

The response time of a process is the time since it starts
until the result is obtained. The response time depends on
the number of threads |T | that can run in parallel. On a
UNIX system, each thread is mapped to a kernel process, and
the operating system scheduler assigns each thread to each
processor core. For this reason, when |T | is greater than the
number of processor cores, the response time of the system
does not improve.

Creating a POSIX thread on Unix/Linux is relatively inex-
pensive. As it is a kernel process that shares almost all its
memory with the rest of the threads in the same user process,
creating a thread consists in reserving space for its stack and
its registers. Creating a POSIX thread in C ++ is to create a
std :: thread object, specifying a function to run and its
arguments. The parent thread can synchronize with the new
threads through several mechanisms. The simplest is by join,
which is a function that blocks the calling thread until one of
his sons ends.
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Fig. 4. Workload assigned to each thread, represented as circles, in T .

The following code shows the multi thread approach in
which T threads are created and destroyed in each iteration
to process a subset of S�−∞. Synchronization follows a
create/join scheme. For simplicity, we show only the
code of the correction phase. Other phases are similar, in terms
of number of threads and synchronization scheme.

int numParts = 200;
int numThreads = 8;
int numPercepts = 20;
Particles parts[numParts];
Points percept[numPercepts];

void doCorrect(int init, int end)
{

for(int i=init; i<end; i++)
update(parts[i], percept);

}

void correct()
{

thread T[NumThreads];

for(int i=0; i<NumThreads; i++)
{

int start = i*(numParts/numThreads);
int end = (i+1)*(numParts/numThreads);

T[i] = thread(doCorrect, start, end);
}

for(int i=0; i<NumThreads; i++)
T[i].join();

}

This approach is valid and it works properly. The drawback
is that we create and destroy 8 thread per phase in each
iteration of the algorithm. If the frequency is 10 Hz, we create
240 threads per second, 14400 threads per minute. Usually, in
a Unix system there is a maximum number of threads that
can run simultaneously, although this limit does not affect us
because it is always 8 in our case. The relevant limit in this
case is the maximum number of PIDs that it is configured the
system. In long operations, this limit is reached easily.

The most convenient approach in this case is to maintain a
pool of threads that are created at the beginning. These threads
wait to be request to start processing, and when they finish are
suspended until they return to be required. Still, we must be
careful because:

• It is no possible to abort a thread from a pool of threads.
• It is nos possible to determine when a thread in a pool

has finished.

For this reason, we must be very careful when designing
a solution based on this approach. The threads of the pool
must be perfectly synchronized to run only at certain times,
when the data to be processed are available. In addition, it
is necessary that the main thread knows when all the threads
have finished. To coordinate this type of scheme we can use
many mechanisms: mutexes, locks, barriers, conditions, etc. In
our implementation we used semaphores. This synchronization
mechanism is very simple:

• The semaphore S is created with an initial value of N .
• If a thread calls the wait() method of S, N is decre-

mented in 1. If N < 0, the calling thread suspends in
S.

• If a thread calls the post() method of S, N is incre-
mented in 1. If N > 0, N blocked threads in S are
activated.

int numParts = 200;
int numThreads = 8;
int numPercepts = 20;
Particles parts[numParts];
Points percept[numPercepts];
thread T[NumThreads];

void initThreads()
{

for(int i=0; i<num_threads_;i++)
start_sems = semaphore(0);

end_sem=semaphore(0);

for(int i=0; i<NumThreads; i++)
{

int start = i*(numParts/numThreads);
int end = (i+1)*(numParts/numThreads);

T[i] = thread(doCorrect, start, end);
}

}
void doCorrect(int init, int end, int th_id)
{

while(true)
{

start_sems[th_id]->wait();
for(int i=init; i<end; i++)

updateProbs(parts[i], percept);
end_sem->post();

}
}

void correct()
{

for(int i=0; i<num_threads_; i++)
start_sems[i]->post();

for(int i=0; i<num_threads_;i++)
end_sem->wait();

}

In the previous source code shows that each thread T[i]
that is created to perform the correct phase has its own
semaphore, start_sems[i], initialized to 0. Threads are
created after initializing these semaphores. All of them run
the doCorrect() function. The id argument is used by
each thread in this function to identify its own semaphore
start_sem[id]. All the threads then are blocked in
each one’s semaphore. The main thread also have its own
semaphore, end_sem, initialized to 0, that is used to block it
while the other threads are processing their data.

When the main thread executes the correct function,
it wakes the other threads T[i] calling the post( ) of
each start_sems[i]. The main thread can not leave the
function correct() until each threads has completed its
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Fig. 5. RoCKiN environment.

work, so call N times the operation wait() of end_sem.
When each thread T[i] finishes its work, it calls the post()
method of end_sem to notify to the main thread this finaliza-
tion. The last thread T[i] in finishing makes the main thread
wakes up. Then, each thread T[i] blocks until next iteration.

V. EXPERIMENTS

The self location method proposed in this paper has been
implemented to execute on board of two different robots: RB-1
and Kobuki. Both robots move by wheels, they have a laser and
RGBD (Asus Xtion) sensor. The robot RB-1 has a computer
on board Intel i7 with 8 cores and 8Gb of RAM. The Kobuki
robot has no onboard computer. In this case, we have equipped
with a laptop with similar features to the computer aboard the
RB-1.

First we will show the results of an experiment measuring
the validity of the localization algorithm. The aim of this
paper is not the reliability and robustness of algorithm but the
multithread strategies to implement it. Still, we will demon-
strate that the implemented algorithm functioning properly.
Therefore, we will show an experiment conducted in the
environment of the RoCKiN competition, shown in Figure
5. In this experiment, the robot will follow a route from
the Hallway of the house to the Dinning Room, and then
to the bedroom. In total, the robot will travel 20 meters
in not autonomous mode (Figure 6). These accuracy results
are independent of the level of multithreading of the self
localization algorithm. The results show that this algorithm
is robust and accurate.

Once validated the algorithm, we will conduct an experi-
ment designed to determine the improvement obtained using
a multithreaded approach. For this goal, we have implemented
the algorithm of self location with both the create/join scheme
as a pool of threads. Each scheme has been running for 1000
iterations, showing the average response time, shown in Figure
8. In this experiment we have established an amount of 1 to
16 threads in each phase of each iteration of the algorithm of
self localization.

In the case of a thread, the average response time per itera-
tion are 113 ms, similar in both experiments. As increasing the
number of threads, the difference between the two strategies is
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increased due to the cost of creation and destruction of threads.
The response time increases as we decrease the number of
threads. The minimum is around 8 threads, since we are
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running this experiment on a CPU with 8 cores. Further thread
increase does not improve the response time, and it begins to
deteriorate in the case of the create/join strategy, due to the
cost of the threads creation/destruction. It is important to note
that we managed to reduce the response time from 113ms to
33ms. The let us to run the algorithm at 30 Mhz if necessary,
instead of the initial 9 Mhz.

VI. CONCLUSIONS Y AND FUTURE WORK

In this paper we have presented a study of the impact
of using multi thread mechanisms to address a problem that
requires intensive computation, such as a location with RGBD
sensors. Naturally, the use of multi threading in multi core
CPUs reduces the response time of the algorithms. We have
shown how to improve the response time of the algorithm
when using as many threads as cores, becoming counterpro-
ductive if this amount is higher.

In addition, we measured the overhead produces by a
create/join thread scheme rather than the one based on a thread
pool scheme. In addition, we have shown how to synchronize
the threads of this pool of threads using semaphores. Using
this scheme, threads are waiting a signal to start processing.
At finalization, threads signal for continuing the execution of
the main thread.

We have described an algorithm based on self location
Monte Carlo algorithm, using an RGBD sensor. The use of
colored dots in the mapped space, and their use in novel self
localization. The disadvantage is that this algorithm requires
many computational resources. This paper presents the bene-
fits of addressing this problem throughout a multi threading
approach. This work has been tested in the last competition
ROCKIN 2015 in Lisbon, shown that it works properly and it
is able to keep the robot located with an acceptable response
time.

One of the future works is to apply GPU parallelization
techniques and compare the results with the results obtained
in this article. Still, we continue to believe that GPU program-
ming requires a low-level programming and limits the use of
libraries have not a GPU version available.
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[10] Martı́n, F., Agüero, C, Plaza, J.M., A Simple, Efficient, and Scalable
Behavior-based Architecture for Robotic Applications, ROBOT’2015 Sec-
ond Iberian Robotics Conference.

[11] Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T.., Leibs, J.,
Wheeler, R., and Ng, Andrew Y., ROS: an open-source Robot Operating
System. ICRA Workshop on Open Source Software. 2009.

[12] Satish, N., Harris, M., Garland, M., Designing Efficient Sorting Algo-
rithms for Manycore Gpus. NVIDIA Corporation, 23rd IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome,
Italy, May 2009.

[13] Kirk, D., Hwu, W., Programming Massively Parallel Processors: A
Hands-On Approach, Morgan Kaufmann Ed., 2010.

[14] Parigi, G., Pau, D., Piastra, M., GPU-based Parallel Implementation
of a Growing Self-Organizing Network, Proceedings of ICINCO 1, pp.
633-643. Jan 2012.

[15] Jang, J., Park, A., Jung, K., Neural network implementation using CUDA
and Open MP, Proceedings of the International Conference on Digital
Image Computing: Techniques and Applications, DICTA 2008, Canberra,
ACT, Australia, Dec 2008.

[16] Orts, S., Garcia, J., Serra, J.A., Cazorla, M., 3D Model Reconstruction
using Neural Gas Accelerated on GPUs, Applied Soft Computing, Vol
32, pp. 87-100. July 2015.

[17] Orts, S., Garcia, J., Viejo. D., Cazorla, M., GPGPU implementation of
growing neural gas: Application to 3D scene reconstruction, Journal of
Parallel and Distributed Computing. Oct 2012

[18] Amamra A., Aouf, N., GPU-based real-time RGBD data filtering,
Journal of Real-Time Image Processing, pp. 1–8, Sept 2014.

[19] Wasza, J., Bauer, S., Hornegger, J., Real-time Preprocessing for Dense
3-D Range Imaging on the GPU: Defect Interpolation, Bilateral Tempo-
ral Averaging and Guided Filtering, IEEE International Conference on
Computer Vision (ICCV), pp 1221–1227. Dec 2011.

[20] Lee, D., GPU-based real-time RGBD 3D SLAM, Proceedings of the 9th
International Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), pp 46–48. 2012.

[21] Rudolph E. Kalman, A New Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME, Journal of Basic Engineering, Vol.
82, No. Series D, pp. 34–45, (1960).

[22] Lastra, R., Vallejos, P. and Ruiz-del-Solar, J,Self-Localization and Ball
Tracking for the RoboCup 4-Legged League, Proceeding of the 2nd IEEE
Latin American Robotics Symposium LARS 2005, Santiago de Chile,
Chile (2005)

[23] Tesli, Luka and A. krjanc, Igor and Klanaear, Gregor, EKF-Based
Localization of a Wheeled Mobile Robot in Structured Environments,
Journal of Intelligent & Robotic Systems, Vol. 62-2, pp. 187–203. 2011.

[24] Hamzah Ahmad and Toru Namerikawa, Extended Kalman filter-based
mobile robot localization with intermittent measurements, Systems Sci-
ence & Control Engineering, Vol. 1-1,pp. 113–126, 2013.

[25] Martı́n F., and Matellán V., and Barrera P., and Cañas, J.M., Localization
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