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Abstract—As robotic systems spread, cybersecurity emerges
as major concern. Currently most research autonomous systems
are built using the ROS framework, along with other commercial
software. ROS is a distributed framework where nodes publish
information that other nodes consume. This model simplifies data
communication but poses a major threat because a malicious
process could easily interfere the communications, read private
messages or even supersede nodes. In this paper we propose that
ROS communications should be encrypted. We also measure how
encryption affects its performance. We have used 3DES cyphering
algorithm and we have evaluated the performance of the system,
both from the computing and the communications point of view.
Preliminary results show that symmetric ciphers using private
keys impose significant delays.

Index Terms—Autonomous systems, Cybersecurity, Data secu-
rity, Cyber-physical systems, ROS, Performance analysis

I. INTRODUCTION

AUTONOMOUS systems are spreading not just in the
virtual world (Internet, software systems), or in science-

fiction movies, but in our ordinary real world. It is possible to
find driverless cars in the streets, autonomous vacuum cleaners
in our homes, autonomous robotic guides at museums, etc.
These robotic systems, as any computer-based system, can
suffer different types of cyber-attacks, and some degree of
cybersecurity [6] is required.

Our research group is developing an assistant robot [4] for
the elderly. When we initiated experiments involving potential
users, caregivers asked us about the security of our robot and
about the privacy of its communications [1]. When an assistant
robot carrying a camera is deployed in a home, the access to
this camera should be secured; even more when the robot is
managing medical information.

We have developed all the software that controls the au-
tonomous behavior of our robot using ROS (Robotic Operating
System) [7] which has become the most popular framework
for developing robotic applications. It started as a research
framework, but currently most of manufacturers of commercial
platforms use ROS as the de facto standard for building robotic
software. For example, object-manipulation robots like Baxter
(by Rethink robotics) [2] or service robots as our RB1 (by
Robotnik) are ROS based platforms.
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A. Security assessment

There are three basic vulnerabilities threatening any com-
puter system: availability (data interruption), confidentiality
(data interception) and integrity (data modification). Other au-
thors also add two more [9]: authenticity and non-repudiation
(data fabrication from a non-trusted origin). These concepts
can be easily translated to industrial control applications [3] or
to robotic environments, due to the distributed approach used
in most used robotic frameworks (Yarp, ROS, ROBOCOMP).

Let’s illustrate this problems considering a robot deployed in
a home environment. This robot provides information to users
and carries out its behaviors in order to fulfill required tasks.
An attacker could attempt to make this robot or its network
resources unavailable, this is a denial-of-service attack. The
attacker could also intercept and modify command messages in
order to change robot behavior, and capture robot information
about the environment and about the users. Finally the attacker
could simulate a sensor generating new data and sending it to
the robot. Fig. 1 summarizes graphically these vulnerabilities
in a robotic environment.

Fig. 1. Conceptual model of the security attacks.

In this research we focus on the confidentiality problem of
the data sent to and from the robot. Our proposal consists in
encrypt data transmitted between ROS processes, adding two
nodes for encryption and decryption task. We don’t change
ROS messages nor ROS standard functions to send the data.
The question is if this hardening of ROS will impact on its
performance.

The reminder of this paper is organized as follows: Next
section describes the ROS framework communication process.



48 PROCEEDINGS OF THE WAF2016, JUNE 2016

Section III defines the testbed designed to measure the per-
formance of the encrypted ROS system. Section IV shows
the data obtained in the proposed experiments as well as
the discussion. Finally section VI presents the conclusions
obtained and further work.

II. ROS OVERVIEW

ROS provides specific libraries for robotics similar to clas-
sical operating system services such as hardware abstraction
(for sensors and actuators), low-level device control, and
inter-process communication. Inter-process communication is
organized as a graph architecture where computation takes
place in ROS processes named nodes. These nodes can receive
and send messages. Unfortunately no security was considered
in the communication mechanism.

ROS framework is basically a message-passing distributed
system. Its architecture is based on processes that publish
messages to topics. For instance, a process (node) can be
in charge of accessing a sensor, performing the information
processing, and publishing it as an information structure on a
named topic. Another process can subscribe to this topic, that
is, read its information. Then the process can make a decision
about the movement of the robot. Next, this node will publish
the commands in another topic to send them to the motors.
ROS nodes can be running in the same computer or in different
computers.

Usual ROS configuration is composed by at least one ROS
Master and some clients. ROS Master is the key element in the
ROS system. It runs as a nameservice and manages registration
information about all topics and services used by ROS nodes.

A node communicates with the Master to register its infor-
mation. Then, the node gets information about other registered
nodes, to be able to establish new connections with their topics
appropriately. The Master is updated in real time by nodes reg-
istering information and topics they publish/subscribe. Fig. 2
summarized the six steps involved in this process as presented
in [8].

Fig. 2. Conceptual model of ROS topics presented by Radu Rusu in his
tutorial[8].

The ROS distributed approach is very convenient for de-
velopers but can be easily tampered by malicious hackers. For
instance, in [5] an experiment involving a ROS-based honeypot

is described. The honeypot was a radio model truck with two
cameras and a compass as sensors, and it was controlled from a
remote ROS node written in Javascript and hosted in a remote
enterprise grade web server. Vulnerabilities described in the
paper comprise plain-text communications, unprotected TCP
ports and unencrypted data storage.

The first step to solve some of these problems is to secure
the communication channels by using an encryption mecha-
nism. But how does encryption impact on the performance of a
robotic system? This is the goal of this paper, characterize and
evaluate different alternatives to secure ROS communication
system and measure their performance.

III. TESTBED DESCRIPTION

In order to evaluate the performance of the encrypted
version of ROS communications environment, we designed the
following scenario. Fig. 3 provides a graphical representation
of the scenario created.

Fig. 3. Scheme of the scenario used for testbed.

First, we installed ROS Indigo in the on-board computer
of the our RB1 mobile robot. The ROS master component
ran in this platform. The robot was connected by wire to
our laboratory network infrastructure for this experiments. The
robot computer has two nodes: one node connected to a sensor
that publishes the data into /sensor/messages topic; and one
node connected to this topic that performs data encryption and
publishes them into a /sensor/encrypt/messages topic.

Second, we used one desktop computer as a “known client”,
also with ROS Indigo installed and connected by cable to
our network. This client knows the master ROS IP, so it can
communicate with master. We run a decryption node in the
client computer, which registers to master and subscribes to
the topic /sensor/encrypt/messages. This node decrypts data
and prints them on the screen.

Third, we used another desktop computer as a simulated
“attacker”, connected to the same cable network. This com-
puter has the same ROS version running on it. The attacker
doesn’t know the master ROS IP, but he can easily discover
it performing a network scan with well known tools like
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nmap. Then, the attacker could execute a malicious node for
attempting to read laser data, which is being published in
the topic /sensor/encrypt/messages. Despite the node could
subscribe to that topic, all data received is encrypted. As a
result, the malicious node can’t see original laser messages
because the attacker doesn’t have the key to decrypt them.

The cryptographic key is stored in the master node and it
is known by the legitimate clients. In a system in production
this mechanism can be implemented as a public-private key
schema as RSA to safely share the key between the nodes.

A. Encrypting ROS messages

In this first approach we have changed the data published
by the node, and instead of publishing the information in a
plain manner, we publish the information encrypted.

ROS uses a messages description language1 for describing
the data values that each node publish. In this manner, it is
easy for ROS tools to automatically generate source code for
the message type in several target languages as ICE or IDL
specification language.

There are built-in types (14), array types (4) and customized
types. For instance, if we get the sensor msgs/Image.msg
message, we find a composed message by one non built-int
message, and five built-in (3 x uint32, 1 x string, 1 x uint8
)and one array type (uint8[]).
std_msgs/Header header #custom msg

uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step

uint8[] data #matrix data of an image

In this case is data field the element that contains the
information of the image grabbed by the camera, so we are
going to encrypt this element before to be publisher in ROS
distributed system.

We use the 3DES algorithm to provide a security layer
to ROS data. It is a known that 3DES cyphering speed
is slower [10] than other cipher methods as for instance
AES. We use this algorithm as the worse environment to
analyze its behavior in a real environment with ROS. Triple
DES (3DES) references the Triple Data Encryption Algorithm
(TDEA or Triple DEA). It is a symmetric-key block cipher that
applies the Data Encryption Standard (DES) algorithm three
times to each data block. It is standardized by NIST in the
Recommendation for the Triple Data Encryption Algorithm
Block Cipher (NIST Special Publication 800-67).

3DES algorithm provides three keys that are 128 (option 1)
or 192 (option 2) bits long. In option 1, the key is split into K1
and K2, whereas K1 = K3. The option 2 is a bundle of three
64 bit independent subkeys: K1, K2, and K3. To highlight
that the three keys should be different, otherwise 3DES would
degrade to single DES.

The data block of the algorithm has a fixed size of 8 bytes
where 1 out of 8 bits is used for redundancy and do not

1http://wiki.ros.org/msg

contribute to security. In that manner, the effective key length
is respectively 112 in option 1 and 168 bits in option 2.

The algorithm presents the next behavior, the plain text
is encrypted three times: first it is encrypted with K1, then
decrypted with K2, and finally encrypted again with K3. The
ciphered text is decrypted in the reverse manner.

3DES is cryptographically secure, although it is slower than
AES algorithm. In a next stage, we will substitute 3DES with
AES in our encryption system and repeat all the test we have
done, to compare the performance.

From the development side, it was used the PyCrypto
package. It is an extended python Cryptography Toolkit that
allows to simply the method to encrypt or decrypt in multiple
encryption algorithms.

IV. EXPERIMENTAL MEASUREMENTS

To illustrate the described approach, we present an ad-
hoc implementation of an encryption system to change part
of the message used for transmit or receive robot sensors
information.

We have added a function to our program in order to
measure the time spent on each encryption and decryption
call. The function is a python method presented as a decorator
pattern, which is used here to extend the functionality of
encryption/decryption at run-time.
def fn_timer(function):

@wraps(function)
def function_timer(*args, **kwargs):

v_time_0 = time.time()
result = function(*args, **kwargs)
v_time_1 = time.time()
return result

return function_timer

We have divided the experiments in three parts. First we
have analyzed how the ”Publisher-listener” ROS nodes work
under encrypted conditions. Then we have stressed the same
nodes publishing bigger text messages, in plain text as well
as encrypted text. Finally we have analyzed a camera sensor,
under the same encryption/decryption conditions.

A. Hardware/Software Set-up

We want to evaluate how the encryption of communications
would affect the performance of ROS. We have used the better
of the cases where a 8x Intel(R) Core(TM) i7-4790 CPU
@ 3.60GHz with 16231MB of RAM Memory and running
an Ubuntu 14.04.4 LTS Operating System. The ROS master
system has 234 process running by default, the client is
running 242 process.

The two computers are connected by an Alcatel-Lucent
OmniSwitch 6860E switch This hardware conditions are the
most favorable against the real environment of a robotic
platform for instance wireless or hardware restrictions.

B. Test 1: HelloWorld Publisher-Listener Node

In this test we have used the version of talker/listener tutorial
proposed by ROS2

2http://wiki.ros.org/rospy tutorials/Tutorials/WritingPublisherSubscriber
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This package distributed by ROS as a demo, presents a
simple ROS package that creates two rospy nodes. The ”talker”
node broadcasts a Hellow world + Timestamp message on
topic ”chatter”, while the ”listener” node receives and prints
the message.

TABLE I
TIME IN SECONDS OF CPU SPENT ON A SIMPLE PUBLISHER/LISTENER

RUNNING TEST.

Plain Plain Encrypt Decrypt
Publication Subscription Publication Subscription

Time running 34.491 34.484 36.882 34.995
Time user 0.184 0.196 0.348 0.24
Time sys 0.024 0.08 0.064 0.056
Total CPU 0.208 0.276 0.412 0.296

Table I presents the CPU time used when the nodes are
running in different machines. The values are the result of
launching ROS nodes using the Unix command time. The
values present a minimal consumption of CPU associated to
the process. In case of plain publish/subscribe it represents
than 1% and in the case of the publisher in encrypt mode it
represents approximately the 1.1%, that is almost the same
than in plain mode.

Fig. 4. Histogram showing the time spent on a encrypt/decrypt DES3 function
call.

Figure 4 presents the histogram associated to the calls to en-
crypt/decrypt method used in these tests. We can observe that
the average time in the encryption process is slightly higher
(0.000065 seconds) than the decryption process (0.000045
second). However, in both cases it is almost negligible. The
worst case presented a 0.000129 seconds in ciphering time
and 0.000239 second of deciphering time.

Figure 5 presents the screenshot of this experiment. It
shows the three terminals from the two nodes involved in
this experiment. Publisher node (top-left window) that presents
a simple log, subscriber node with key (bottom-left) that
presents the message after the decryption call and subscriber
node without key (rostopic echo ) that shows the encrypted
message in the topic.

C. Test 2: Custom Text Publisher-Listener Node

In this test we have used the same version of talker/listener
nodes proposed by ROS. In this particular test we generate a
synthetic text strings with different sizes:

• T1: this is a string message of 262144 bytes (256 KB)
• T2: it is a string message of 524288 bytes (512 KB)
• T3: presents a string message of 1048576 bytes (1024

KB)
We want to determine the duration of execution of our talker

and the time spent by our listener nodes. Again, we run the
Linux time command to measure the total CPU time consumed
by the ROS talker process.

Initially we run the test with the three size types of messages
using plain text. We have performed the test three times,
running the nodes for a time lapse of 30 to 35 seconds. Firstly,
reviewing the T1 type (it is presented in a time window of
32.884 seconds) we find a CPU time of 1.408 seconds. It
was a user time of 1.364 seconds and a sys time of 0.044s. I
Secondly, we analyse the string of type T2. It was launched
in a window of 33.749 seconds, and needed a total CPU of a
2.672 seconds (user time of 2.508s and a sys time of 0.164s).
Finally, we analyse T3, that presents in a time window of
34.731 seconds a total CPU of 5.260 seconds (it is divided by
a user time of 5.140s and a sys time of 0.120s).

Fig. 6. Time of CPU spent by publiser/subscriber nodes sending T1, T2 and
T3 messages in plain and Encrypted/Decrypted on test 2.

This is totally different when we are working with encrypted
text messages. Fig 6 presents the main differences. We have
repeated the same experiment, but this time calling an en-
cryption method that encrypts from plain text to 3DES. It is
possible to see that the encrypt process consumes more CPU
than the plain process. For instance, T1 type presents running
for 34.486 seconds a total of 23.008 of CPU. This means that
the total CPU time increases almost 62%. This is even higher
in T2 and T3 types with almost the 98% of real execution time.
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Fig. 5. Screen-shot with the nodes involved in the simple publisher/subscribe test. Upper left terminal presents the publisher node before encryption. Bottom
left terminal depicts the subscriber node after decryption. Right terminal presents the results of rostopic echo on /chatter topic used for transmitting info
through nodes.

It is clear that the encrypted/decrypted approach consumes
more CPU (yellow bars in Fig. 6) than plain text (orange bars
in Fig. 6).

Fig. 7. Histogram by each publisher node attending each call to the
encryption method.

We know that the encryption process needs more CPU,
but how long does the encryption/decryption takes in each
iteration?. Just for clarification, we review the encryption
phase in the publisher node. In case of T1 messages, during its
window (34.486s) the node is able to encrypt 1040 messages.
The minimal time to perform this task is 0.059246 seconds and

the maximum time to encrypt the string is 0.683408 seconds.
In average, the system spends 0.063858 seconds (standard
deviation of 0.000388s). This time increases with T2 and
T3 types. T2 type needs 0.123383 seconds in average with
standard deviation of 0.000040s and T3 0.247303s with a
standard deviation of 0.000137s. Fig. 7 presents the histogram
associated to this experiment.

D. Test 3: Camera Node

The third experiment has been developed using a RGB cam-
era. A Logitech, Inc. QuickCam Pro 9000 webcam providing
15 frames per second (fps) using a 640x480 pixels resolution.
This sensor was registered on ROS system to deliver images
to the system.

This test involved three ROS nodes, two publishers:
usb cam, encrypted node and one listener: decrypted node.
First ROS node,usb cam3 was based in the code contributed
by Benjamin Pitzer and still maintained by ROS developers.
It is in charge of recording information from the camera and
publishing in the usb cam topic.

The second node runs in the same computer and it is in
charge of encrypting the message published by usb cam. The
third node runs on a different computer and it is in charge
of decrypting the messages got from the publisher and of
displaying the received image on the display.

Figure 8 graphically represents this set up for a given
moment T at the listener node. We used the ROS node

3http://wiki.ros.org/usb cam
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Fig. 8. Screenshot taken during image encryption test.

image view to visualize images in both topics: the non-
encrypted one, that to validate delays, and the encrypted one
(that cannot be visualized) and the frame that shows the image
after decryption.

We measured the time needed to encrypt and decrypt the
ROS message (sensor msgs/Image.msg). We just encrypted
and decrypted the field data, defined as uint8[] and pro-
cessed as a text string. Our nodes shows this information
during the execution in a visualization frame that we used
to measure the frame rate.

We ran this experiment for 18 hours sending in total 971.790
frames. The average time in the process of encrypt the sen-
sor data was 0.010948 seconds (stddev 0.000004s). Minimal
processing time was 0.001309 seconds and max processing
time was 0.026909 seconds. The average time to decrypt the
images was 0.008828 seconds (stddev 0.000003s). The max
time decrypting an image was 0.039130s and the minimal
0.001288s.

V. DISCUSSION

This study provides an in-depth characterization of the
use of 3DES encryption in ROS communications. First, we
have configured two ROS nodes equipped with state of the
art computer power capabilities. The only software running
on both machines in the first experiment was limited to the
one needed for the test, no extra computational process were
running during the experiments.

Results presented in this test showed that there is no
difference in the performance between sending a plain string
of chars Hello world + timestamps and an encrypted string of

chars. However, the experiments showed that CPU time used
by the encrypting of messages has a geometric progression
with the size of the message, which means that the perfor-
mance of the global system is reduced.

ROS has a logging system that measures the pub-
lish/subscribe performance among connected nodes. When the
system is active on a node, the statistical data is published in
a specific topic that is updated at 1Hz.Using this system we
have observed two main issues:

• Traffic in bytes grows lineally with the number of mes-
sages:

– plain mode delivers 10 messages of 346 bytes (av-
erage) of traffic.

– encrypted mode delivers 10 messages per second
whose size is 420 bytes in average.

• Performance decrease quadratically with the size of the
messages:

1) plain mode delivers 10 messages per second of
11.010.132 bytes of traffic (in average).

2) encrypted mode only delivers 5 messages per sec-
ond in average of 5.242.880 bytes of traffic (in
average).

The performance reduction is due to the time consumed
by the encryption and decryption process in each message:
Publisher uses 0.247303 seconds per message to encrypt every
message. Listener needs 0.240323 seconds per message just
for decrypting. This means that the publisher process needs
more time to produce messages and the listener more time to
consume it.

In the same manner, if the publisher needs to process this
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Fig. 9. Time spent on each call to encryption/decryption function during the image processing in test 3.

information in any way, for instance showing the message
in the screen, the overall performance producer/consumer is
reduced.

Finally, the experimental evaluation made in test 3 does not
show a significant delay due to the encryption process. For
instance, we got 14.56 frames per second in the publisher,
and 14.54 frames per second in the listener.

Fig. 9 shows the performance of the publisher cyphering
data. Left part of the figure summarizes the time used for
encrypting and decrypting the three types of messages. The
right part is the histogram of times used for calls to the en-
cryption method. We observe that processing times in average
are similar, the encryption process is slightly higher (2ms) than
in the decryption process.

VI. CONCLUSION AND FURTHER WORK

We have shown that using ciphered communications avoids
security problems related with the plain-text publish/subscribe
paradigm used by ROS. However, the overhead of CPU per-
formance and communication load should also be considered
in distributed architectures that need to work on real time.

This article presents a performance analysis of the use
of encrypted communications in a ROS system. We have
evaluated the impact of this added feature from two points
of view: CPU consuming and network traffic.

As we pointed out in the introduction, securing communica-
tions is just one dimension in the cybersecurity of autonomous
systems. If we want to see these machines working in our
homes we need to secure navigation abilities and interaction
mechanisms, to avoid manipulated or malicious behaviors and
make robots reliable assistants, in particular if we want to
install mobile robots in private spaces as homes.

As a further work we would like to test Real-Time Publish
Subscribe (RTPS) protocol used by the ROS2 communications
design. In that manner we plan to evaluate in a quantitative
way the network and CPU performance under similar condi-
tions as well as to compare qualitatively the pros and cons of
the DDS based solution proposed in the new ROS design4.
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