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Abstract In the present paper we describe an efficient and
portable optimization method for calibrating the walk para-
meters of a quadruped robot, and its contribution for the ro-
bot control and localization. The locomotion of a legged ro-
bot presents not only the problem of maximizing the speed,
but also the problem of obtaining a precise speed response,
and achieving an acceptable odometry information. In this
study we use a simulated annealing algorithm for calibrating
different parametric sets for different speed ranges, with the
goal of avoiding discontinuities. The results are applied to
the robot AIBO in the RoboCup domain. Moreover, we out-
line the relevance of calibration to the control, showing the
improvement obtained in odometry and, as a consequence,
in robot localization.
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1 Introduction

Locomotion and odometry constitute the two main problems
in legged robotics. Legged locomotion has many parame-
ters which have to be calibrated. For instance, the speed re-
sponse differs depending on the surface, as a rough surface
requires a different gait than a smooth one. Furthermore,
odometry varies depending both on the characteristics of the
surface and on the locomotion parameters. Different carpets
require different locomotion parameters, therefore the cali-
bration method must be portable. Portability is an advantage
in the context of robotics competitions, in which the robot-
ics system has to be calibrated and run in different places
and under different conditions. Moreover, in some competi-
tions additional installations such as zenithal cameras, sen-
sors, etc., are not allowed. We have developed a calibration
process for both walk parameters and odometry using a sim-
ulated annealing learning approach, and the application de-
veloped enables such calibration to be fully automated. The
input data for the learning algorithm is the measure of the
robot’s instant speed, and therefore the walk calibration is
relatively fast, taking about 40 minutes. The odometry cali-
bration takes 60 minutes.

Our study has been performed in the scope of the
RoboCup domain. RoboCup [15] is an international com-
petition, the ultimate goal of which is to develop a team of
autonomous robots capable of competing with the human
world soccer champion team by the year 2050. The scope of
our research is the Four-Legged Robot League with SONY
AIBO [18] robots. Currently this league has been replaced
by the Standard Platform League with a new robotic plat-
form, the Nao robot, which is not considered in this work.
The Four-Legged League field has a size of approximately
6 m × 4 m. The Aibo robot’s main exteroceptive sensor is
a camera, used to detect objects in the field. Objects are
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Portable autonomous walk calibration for 4-legged robots 137

colour coded: there are two uniquely coloured beacons, two
goal nets of a different colour, the ball is orange, and the
robots wear coloured uniforms. In spite of these facilities,
both perception and locomotion can be both very noisy and
erroneous. For example, robots can collide with each other,
the carpet characteristics are not standard and can vary from
one field to another, the referee can manually remove robots
and place them in different parts of the field, etc. Perception
is also challenging: fast robot movements can lead to fail-
ures in perception, as well as occlusions and other external
problems.

The rest of the paper is organized as follows. First, the
related work in the field is outlined. After that, the experi-
mental procedure is explained in Sect. 3. Then, we describe
the learning process (Sect. 4) for both speed maximization
(Sect. 4.1) and response optimization (Sect. 4.2). Finally,
we describe error measurements and results (Sect. 5), and
an application of the technique for enhancing localization in
Sect. 5.1, concluding in Sect. 6.

2 Related work

The gait calibration was first approached as a tuning-by-
hand procedure. This is a difficult task and the result was
not optimal. The need to perform a gait calibration for dif-
ferent surfaces has motivated the use of machine learning
approaches. For instance [4, 5, 8, 16] and [12] used genetic
algorithms to find the parameter set which best optimized
the gait. These methods were designed to improve the speed
that the robot could achieve. However we were also inter-
ested in obtaining the closest speed to the desired one. Other
approaches have used different optimization and machine
learning approaches, such as gradient descent methods [3],
multi-dimensional minimization based on Powell’s method
[10] and downhill simplex algorithms [12]. In [17], a method
for both fast and camera-stable movement was presented. In
the present study we focus on a system with an instant speed
measurement, i.e., the current robot speed is measured every
few seconds, so that the learning process is faster than other
approaches, as explained in the rest of this section. The algo-
rithm used in our approach is based on simulated annealing,
as explained later.

Another issue in the approaches for walk calibration is
the way in which the speed of the robot is measured. Some
approaches have used an external camera situated above the
robot’s field [3]. However, although this is a very precise
means of measuring the instant speed of the robot, such a
system is not easy to install in new scenarios. On the other
hand, there are some approaches designed to be portable.
For example, in [4], robot velocity was measured by mak-
ing the robot walk for a given period of time and calculat-
ing how far it had reached. A localization system was used,

based on coloured marks around the field. In several other
approaches, such as [12] and [10], the speed of the robot
was calculated by measuring the time it took the robot to
walk from one of the field’s landmarks, to the opposite one.
A faster method for measuring a robot’s instant speed was
proposed in [5], where a black and white pattern was used
for localization. In [16] the authors used forward kinematics
and the Aibo acceleration sensor. The approach presented
in this paper uses white patterns in the field, similar to the
approach of [5], in order to enable the robot to measure its
speed quickly and autonomously. The patterns are also used
to correct the robot’s direction during its runs. Note that the
camera above the field which we present later in this paper
is used as a ground truth for the localization experiments,
but the walk calibration system remains fully portable.

Finally, another important issue in gait optimization is
the use of different sets of parameters for different speeds.
Although such an approach has already been used in [5],
the suitability of a parameter set for interpolation was eval-
uated manually. Our approach considers different parame-
ter sets for different speed ranges. Interpolation is unnec-
essary because the optimization procedure we propose not
only maximizes the speed but also minimizes speed discon-
tinuity between consecutive parameter sets. Thus, when a
speed change requires a switch between two parameter sets,
the change in the actual speed response is smooth.

An initial version of our walk calibration system was pre-
sented in [1]. There, the initial goal was to improve walk-
ing stability and speed. In the present study, the goal of the
calibration system was manifold. First, we have aimed to
optimize the walking style in terms of speed and stability.
Second, we have adjusted walk parameters to improve the
robot’s odometry. In this paper, we present a set of experi-
ments designed to show the contribution of walk parameter
calibration to robot performance in terms of localization and
control. To this end, we have performed an odometry cali-
bration of the robot with its original walk parameters and we
have realised localization experiments. Moreover, we have
calibrated the walk engine parameters for the concrete sur-
face used in the experiments. Then we have performed an
odometry calibration for this second set of walk parameters
and repeated the localization experiments. The results show
that a calibrated set of walk parameters improves localiza-
tion and control of the robot. Furthermore, our method rep-
resents an improvement of previous ones as we use fewer
samples to learn, speeding up the entire process.

3 Experimental setup

The calibration tool developed was used in the RoboCup
competition by the “TeamChaos” team [19]. This team rep-
resents a cooperative effort involving the Örebro University
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of Sweden and the Spanish universities Rey Juan Carlos
University (Madrid), the University of Murcia and the Uni-
versity of Alicante. The robot we used for the RoboCup and
for the experiments was the Sony AIBO ERS-7 four-legged
robot [18]. The walk implementation used was a forward,
lateral and rotational locomotion walking style [6, 9]. The
parameters we considered are presented in Fig. 2, and their
meanings are listed in Table 1. In this paper we have not
considered the walk engine itself, as our purpose was to op-
timize the parameters which the walk engine offers. For a
better explanation of the walk parameters and the walk en-
gine, see [3].

Our calibration experiments were based on measuring the
robot’s speed while walking. In order to measure the speed
and guide the robot, we used a camera installed on the ro-
bot’s head and a series of marks on the ground as shown in
Fig. 1. We used a resolution of 208 × 160 pixels in order to
segment the white colour [20] and perform a blobs analysis.
A white line on the ground determined a straight trajectory
for the robot. The measurement was stopped briefly when
the robot reached the end of the line before it turned around
to follow the line again. If the robot deviated from the line,
it was able to find it again, allowing the process to be unsu-
pervised by the user. There were also distance marks along
the line, spaced 20 cm apart from each other. The robot de-
tected these marks and calculated its instant speed based on
the milliseconds it took it to reach each consecutive mark.
Actually, it is not an instant speed, but a time difference be-
tween two consecutive marks. In other portable approaches,
the speed was measured based on the time it took the robot
to walk from one side of the field to the other. A rigorous
measurement of instant speed is possible if a non portable
system, incorporating a fixed external camera supervising
the robot, is employed. We used such a system, but only
for experimental validation of the results presented in this
paper. Moreover, it is important to remark that the ground
truth system was not used for walk calibration due to the
portability of our method. We also applied a filter for er-
roneous measurements in case the robot missed a mark. In
order to improve stability of the calculated speeds, we used
the mean value of each three instant speed measurements as
a learning algorithm input.

In addition, our self-calibration system has been designed
to be highly portable to any place or surface, as the only in-
frastructure needed is the series of white marks, which can
easily be incorporated onto any surface. No ground-truth
system is required, although in Sect. 5.1 we report its use in
order to demonstrate that calibration does actually improve
robot odometry and localization. This is a fundamental re-
quirement given that we compete in different countries and
on different surfaces.

The control software built by our team uses the three dif-
ferent walking modes of forward walking, lateral walking,

Fig. 1 Robot and distance marks for forward, lateral, and rotational
walking

Table 1 Meaning of the walk engine parameters

Front leg Back leg

Height of the loci hf hb

Height of the leg hdf hdb

Sideways offset fso bso

Forward offset ffo bfo

and turning (Fig. 1). Forward walking was the crucial mode
for the present study, and was the one used in this article to
illustrate the learning process. During the execution of the
on-line learning algorithm, walk parameters were continu-
ously being changed to obtain different speed responses. In
order to measure the error of forward, lateral and rotational
walking modes, the parameters were kept constant, as the
robot performed several speed measurements for each dif-
ferent speed requested.

4 Learning procedure

As mentioned above, our goal was to find parameter sets that
both maximized the upper limit of speed and improved the
response for the entire range of possible speeds. An appro-
priate speed response enables greater precision of control,
odometry and, consequently, localization, as we will show
in Sect. 5.1.

Different techniques can be applied to find a suitable set
of walk parameters (see [2]). This can be seen as an op-
timization problem in a continuous parametric space with
8 highly irregular dimensions. Setting parameters manually
takes many hours and the results are not satisfactory. On the
other hand, obtaining a general analytical solution is not fea-
sible. Varying each parameter independently and selecting
the best value of each parameter is possible but not optimal,
as the parameters are not independent due to kinematics con-
straints (for example, rear knee angles are determined by the
hb, hdb, and bso parameters in conjunction (see Fig. 2)).
This 1-dimensional search method was used to establish the
limits of the parametric space and to determine an initial
set of parameters for the subsequent search within the 8-
dimensional space of parameters.

The algorithm we chose followed a simulated annealing
[11] scheme. It comprised a probabilistic algorithm which
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Fig. 2 Scheme of Sony’s quadruped robot AIBO with the 8 pa-
rameters involved into the calibration: {hf,hb,hdf,hdb,fso,
bso,ffo,bfo}

aimed to find a good solution to the global optimization
problem. We do not know the function of the parameters
space, so we can not provide an analytical solution. We do
not even know the local minima of the function, but simu-
lated annealing allowed us to overcome them when the tem-
perature was high (first iterations). As the temperature de-
creased, the probability of jumping outside the local minima
diminished.

There is a wide range of different algorithms which look
for good global optimization solutions. Among them there
are genetic algorithms [7, 13], tabu search, ant colony [14],
and particle swarm optimization approaches. However, due
to the cost of evaluating a single parameter set (the robot has
to walk more than 20 cm and measure its speed), maintain-
ing a population of solutions results in a higher complexity.
In the Robocup domain, one can not use the field more than
several hours to adjust our system. Because of that, our opti-
mization algorithm must be as fast and effective as possible.
Simulated annealing is a relatively straight-forward solution
to our problem and its formulation is suitable for a continu-
ous parameters space. The function to minimize is the neg-
ative of the maximum speed achieved (see (3)) plus the re-
sponse optimization function (see (4)), both explained in the
following subsections. As other heuristic optimization tech-
niques, simulated annealing can reach a good solution and
lose it afterwards, because of the stochastic nature of the
algorithm. That is why we always keep the best evaluated
solution.

4.1 Speed maximization

One of our goals was to improve the maximum speed for a
given surface. Our simulated annealing algorithm explored
the parametric space accepting improvements with high
probability, depending on the temperature. An illustration
of this procedure is shown in (1),

P(C) =
{

e
− f −fold

ηT , f > fold

1, f ≤ fold
(1)

where P(C) is the probability of accepting the change C of
parameters, and fold and f are the result of the evaluation
function before C and after C. The evaluation function in
this problem is the measure of the instant speed of the robot.
T is the temperature with an initial value of 2.0 decreas-
ing by 10% with each iteration (each iteration has 3 steps of
parameter changes). The factor η is used to scale the evalu-
ation function and its value is the average variation of f in
each step of the algorithm. For example, for fmax (see (3)),
η = 0.01, while for fmin (see (4)), η = 0.0001. η is set man-
ually. The parameters pi are updated at intervals depending
on the temperature T :

�pi = μi

√
T rand(−1,1) (2)

Here i ∈ [1,8] represents any of the 8 different parameters.
μ is used to scale the changes according to the range of each
parameter pi , and it is initialized with a value that allows
each pi to be a 10% maximum of the parameter’s range.
Therefore, from (2) it can be deduced that μi = R(pi)

10
√

T0
,

where R(pi) is the range of values for each parameter and
T0 is the initial temperature. The function rand(−1,1) re-
turns any random value in the interval (−1,+1).

For the speed maximization problem, the evaluation
function depends only on the maximum speed that the robot
can achieve. The sign is negative because the algorithm is
based on energy minimization.

fmax(speed) = −speed (3)

The initial parameter set can influence the effectiveness of
the learning process, so we started from an acceptable one,
as explained in the previous subsection. Our algorithm found
a good set after one hundred iterations (which took between
10 and 15 minutes), improving the initial speed by 30%. The
stop criterion was based on the temperature T . When T was
below a certain threshold such that further changes are im-
probable, the optimization process concluded. An example
of speed evolution during annealing is shown in Fig. 3. Due
to time restrictions we tuned the simulated annealing tem-
perature to decrease very quickly, for this reason the algo-
rithm could fall into a local minimum in some cases.

A result of the speed maximization is shown in Fig. 4,
where requested vs. obtained (real) speed on a particular
surface is represented. The maximum speed achieved de-
pends primarily on the surface. With the walk engine used in
our experiments we achieve a speed of 0.28 m/s. This speed
is close to the upper physical speed limit of this walk en-
gine. There are other walking engines which achieve higher
speeds using a different gait design (although these also need
parameter optimization). On soft or slippery surfaces, the
maximum speed is usually lower than on a hard surface, for
an example see Fig. 4.
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140 B. Bonev et al.

Fig. 3 Evolution of the speeds obtained during execution of the simu-
lated annealing

Fig. 4 (Color online) Relation between requested speed and the real
speed obtained: blue line: on a hard surface; black line: on a soft surface

4.2 Response optimization

Regardless of any improvement, the maximum achievable
speed is physically limited. The next objective was to im-
prove the relationship between the requested and the ob-
tained speed. This relationship is not linear when the same
set of parameters for the entire range of possible speeds is
used (Fig. 4), and as a result imprecisions in the control of
the robot and incorrect odometric estimations arise. This ef-
fect is partially due to the locomotion model and also to the
physical characteristics of the surface on which the robot
moves. Our goal in this process is to get a linear response in
requested versus obtained speeds.

Our proposal is based on using different sets of parame-
ters for different speed intervals. However, one constraint of
the problem is the need for continuity between intervals. To
perform such a calibration, we modified the learning algo-
rithm in order to obtain the real speeds (v′

l , v
′
u) for the lower

and upper limit of the definite speed interval [vl, vu] simul-

Fig. 5 The roles of the fmin and fmax objective functions are to mini-
mize discontinuities in the speed response, and to maximize the maxi-
mum speed response

taneously. When the goal for the simulated annealing is a
concrete value of speed, the difference between desired and
obtained speed must be minimized. For each pair of con-
secutive speed intervals we had two goals, so we alternated
measurements of the speeds vl and vu, using the objective
function:

fmin(s1, s2) = |(s1 − vl)
2 − (s2 − vu)

2| (4)

where s1 and s2 are the actual speed measurements, and vl

and vu are the desired speeds sent to the walk engine, as
already explained. The aim of this objective function was
to achieve a smooth speed change between two consecutive
speed intervals. Both objective functions are illustrated in
Fig. 5. Thus, for n > 1, calibration process parameter sets
would be as follows:

1. Find a parameter set by means of speed maximiza-
tion. Thus the achieved maximum speed is vmax. Deter-
mine the values vn−1, vn−2 . . . v1 so that vmax > vn−1 >

vn−2 > · · · > v1 > 0.
2. Optimize the parameters set Sn for the speed interval

[vn−1, vmax]
3. Similarly, for each i, n > i ≥ 0 optimize the parameter

set Sn for the speed interval [vi−1, vi].
Thus we attempted to approximate the speed responses of
the lower limit of an interval Si and the upper one of the
next interval Si−1.

4.3 Discussion

The number of parameter sets depends on the locomotion
model, i.e., different locomotion models need different num-
ber of parameter sets. In our model, we have tested different
numbers of parameter sets. In Fig. 6 we show the resulting
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speed responses for 1, 2, and 6 sets, which correspond to
the best results obtained. In this figure, the requested speed
versus obtained speed is shown. Why a number of a para-
meter set is better than other? Because we experimentally
show that different numbers of parameter sets yield different
speed responses. For example, when using one set at 0.15
the obtained speed is 0.17, which is not desirable. We ex-
perimentally show that with two parameter sets the obtained
speed has less discontinuities and is closer to the requested
speed.

Although it can be difficult to avoid discontinuities be-
tween the different speed intervals, with two parameter sets
it was possible to avoid discontinuity at 15 cm/s (due to the
design and implementation of the walk engine [9]), that is, it
was possible to minimize the difference between requested
and obtained speed. For that reason, we have used 2 para-
meter sets for the rest of the paper.

5 Experimental validation

Once the walk parameters have been calibrated, our simu-
lated annealing approach obtained a very good approxima-
tion of the requested speed. However, odometry calibration
was still necessary in order to take into account the differ-
ences that might still exist following calibration, as well as
any errors and variances. Measuring the error is necessary
in order to carry out a precise estimation of accumulated un-
certainty while the robot walks. Error depends both on the
surface and the parameters set, so these measurements must
be taken after each new calibration of the walk.

In order to measure the error we discretized the speed
range into 20 values. We took 10 speed measures for each
of them, in order to obtain their associated error and vari-
ance. Figure 7 shows the speed responses of forward, lateral
and rotational walking and their associated error measures.
The left column shows the average of the measured speeds.
Each measure has an error with respect to the desired speed.
The right column represents the mean error from ten exper-
iments. The error of the figures on the right does not refer
to the difference between desired and obtained speeds. It is
the error among different repetitions of the same experiment.
The values of these error measures are used for the odometry
calibration and they are important for a good localization, as
explained in the following subsections.

The localization experiments presented in the following
section were carried out according to Fig. 8, using a cali-
brated odometry for both unoptimized and optimized walk
parameters using the system previously described. The goal
of these experiments was to show the contribution of the cal-
ibration to the real performance of the robot.

Fig. 6 Relationship between requested and obtained speed for:
(a) 1 set of parameters; (b) 2 sets of parameters; (c) 6 sets of para-
meters

5.1 Localization enhancement

Once the parameters have been obtained, we wanted to test
their influence on other player modules. We chose self-
localization ability because it significantly influences the
global behavior of the player (localization information is
used in role assignment, movement decisions, etc.). The ma-
jority of probabilistic localization algorithms are based on
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Fig. 7 On the left, the speed responses for forward, lateral and rotational walking; on the right, their associated error measures (requested speed
vs the obtained speed)
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Fig. 8 Flowchart of the experiments

two phases. In the prediction phase we used a movement
model to calculate how a new action modified the robot’s
state. These models were primarily based on the odome-
try produced by a motion module. In the correction phase
we used sensory information to adjust the predicted robot’s
state. Success in the localization process depends to a large
extent on the quality of the odometry calculated, and the cal-
culated error of this information.

In this section we will analyze how the localization
process was improved by using the proposed method. First,
we used the uncalibrated parameters, which had been opti-
mized using the previously described method on a real robot,
to describe several trajectories in a Robocup field. We cal-
ibrated the walking parameters with the proposed method
and then made the robot follow the same trajectories. The
results showed how the localization process was improved
using the proposed calibration method.

A ground truth system was used to compare the actual po-
sition with the one estimated by the robot, as can be seen in
Fig. 9. We used two zenithal cameras connected to two com-
puters which functioned as servers. The client (represented
as a laptop in the figure) was connected to the servers and to
the robot in order to send them a signal to start the tracking
process. In this process, the robot started to locally record all
the sensor information perceived in a log file, and the servers
connected to the cameras started to locally record the actual
robot pose in a log file. All the elements reset their clocks
and responded to the init signal with an acknowledgement
message in order to measure the time difference between
log files (always lower than 6 milliseconds). Once the client

Fig. 9 Ground truth system

Table 2 Precision of the test points (mm)

distancex distancey distance

Mean 32 18.2 39.24

Variance 15.9 10.5 13

had sent a signal to stop recording to all the elements, all the
log files were mixed. The purpose of this mechanism was to
avoid networking latencies.

Ground truth precision had previously been calibrated to
ensure the correctness of the calculated robot position. The
set of points used in the calibration are shown at the top
of Fig. 10. Error in the ground truth system is summarized
in Table 2. The maximum error was 64 mm, which corre-
sponds to points at the border of the image. The mean error
was 32 mm, which we considered sufficiently accurate to
validate the ground truth system (considering that the size
of the robot is 310 × 180 mm).

As a result of the movement improvement proposed in
this paper, the odometric information was more accurate and
the error estimation was also improved. The localization al-
gorithm used was an Extended Kalman Filter (EKF). We
used this algorithm because it can be considered a standard
tracking algorithm, where both observations and odometry
accuracy are key factors in its success. The goal of these ex-
periments was to test how the localization process was im-
proved, only by improving the odometric information. Be-
cause of this, in this section we show the localization results
using the previous locomotion and the improved one.

We have designed three different experiments where half
of the trials was done using sets of walk settings obtained
with our previous manual system, and the other half was
performed with the simulated annealing-based system set-
tings. In both cases, the localization system was initialized at
the robot’s real position and updated with the odometry and
sensory information. Odometry was calibrated for both ex-
periments using the self-calibration method previously de-
scribed.

Author's personal copy



144 B. Bonev et al.

Fig. 10 Calibration and test points

The first experiment consisted in the robot being com-
manded a rectilinear movement at variable speed. Figure 11-
above, shows the trajectory of a single trial carried out dur-
ing this experiment. The left graph shows the trajectory fol-
lowed when using the manually obtained settings, and the
right graph shows a trial using the learnt walk parameters,
both using the calibrated odometry. The trial using manu-
ally obtained settings demonstrated that linear odometry is
shorter than actual odometry, and the calculated error in the
odometry did not let localization system correct the estima-
tion. The trial with calibration obtained using the simulated
annealing system was better. In this case, the linear odom-
etry corresponded to the actual displacement, and the devi-
ation in the trajectory could be corrected based on a good
estimation of the error. The second experiment comprised
two linear movements and a rotational one. The trajecto-
ries for this second experiment are shown in Fig. 11-middle.
As in the first experiment, the difference between the posi-
tion calculated by the ground truth and the estimated posi-
tion was more accurate in the calibrated case. Finally, in the
third experiment, the robot moves in a circle making three
turns. The results are shown in Fig. 11-bottom and, again,
the calibration obtained using the simulated annealing sys-
tem was crucial for correct estimation of the robot position.
In this case the error in the manually calibrated system is
very large and the final position and orientation are com-
pletely wrong. As the results show, the problem is not due to
the localization method, but to the calibration of the odom-
etry.

The numerical results are summarized in Table 3. This ta-
ble presents an analysis of the error in robot pose estimation
and confirms that the calibration obtained using the simu-

Table 3 Error in the estimated position (mm)

type mean stdev median maximun

Original settings 402.52 305.04 366.43 1555.2

Calibrated odo. 208.21 124.87 177.34 586.30

lated annealing system was decisive for a correct position
estimation.

6 Conclusions

The use of walk calibration using machine learning proved
to be feasible, as well as necessary, especially when moving
the system to different surfaces. The TeamChaos team im-
proved its maximum speed by 30% using a machine learn-
ing method based on simulated annealing. Furthermore, the
use of multiple parameter sets enabled us to improve the
speed response by correcting discontinuities in the speed
space. We obtained our best result when using 2 sets of
parameters. To the best of our knowledge, this is the first
time that this approach has been applied. Moreover, the pre-
cise error measurements provided the odometry system with
more precise information about motion uncertainty. We have
also shown how the system improved robot self-localization,
which has greatly increased the efficiency of our player. The
process was faster when using our algorithm than apply-
ing previously described methods. The system is also fully
portable, which is an important issue in many mobile robot-
ics applications, especially in terms of the Robocup compe-
tition.
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Fig. 11 (Color online) Real trajectory is shown in red line (obtained
by the ground-truth system). The estimated position is represented by
the blue line. The left graphs give the result for manually calibrated

odometry and the right ones gives the result for calibration obtained
using the simulated annealing system. Above: linear trajectory; middle:
lateral trajectory; bottom: circular trajectory

Regarding further research, calibrating the walk parame-
ters for forward speed only constitutes a good solution for
the RoboCup domain. Using the infrastructure of our ex-
periments, a study of more complete calibration could be

carried out by simultaneously calibrating forward, lateral,
and rotational walking. This is not necessary in our domain
and it would take much more time; nevertheless, it would be
possible thanks to our instant speed measuring procedure.
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Finally, a calibration of curved lines could be considered,
instead of separating calibration into three different walking
types.

Acknowledgements The authors wish to thank the TeamChaos team
(http://www.teamchaos.es) for all their support during the experiments.
This research has been partially funded by the Spanish Ministerio de
Ciencia y Tecnología, DITPA project (DPI2004-07993-C03), by the
Generalitat Valenciana project GV06/134, and by the Comunidad de
Madrid as part of the RoboCity 2030 project (S-0505/DPI/0176).

References

1. Bonev B, Cazorla M, Martínez H (2005) Walk calibration in a
four-legged robot. In: Proceedings of CLAWAR (climbing and
walking robots). London (UK)

2. Chalup SK, Murch CL, Quinlan MJ (2007) Machine learning with
AIBO robots in the four-legged league of RoboCup. IEEE Trans
Syst Man Cybern 37(3)

3. Chen W (2005) Odometry calibration and gait optimisation. PhD
Thesis. The University of New South Wales

4. Chernova S, Veloso M (2004) An evolutionary approach to gait
learning for four-legged robots. In: Proceedings of IROS’04,
Sendai, Japan

5. Düffert U, Hoffmann J (2006) Reliable and precise gait model-
ing for a quadruped robot. In: Proc 9th international workshop on
RoboCup 2005 (robot world cup soccer games and conferences).
LNAI. Springer, Berlin

6. Hafmar H, Lundin J (2002) Quadruped locomotion for football
robots. Master Thesis, Chalmers University of Technology, Gote-
borg, Sweden

7. Hanshar F, Ombuki-Berman B (2007) Dynamic vehicle routing
using genetic algorithms. Appl Intell 27(1):8999

8. Hebbel M, Nistico W, Fisseler D (2007) Learning in a high di-
mensional space: fast omnidirectional quadrupedal locomotion.
In: RoboCup 2006: Robot soccer world cup X. LNAI, vol 4434.
Springer, Berlin, pp 314–321

9. Hengst B, Ibbotson B, Pham P, Sammut C (2002) Omnidirectional
locomotion for quadruped robots. In: Proceedings of RoboCup
2001. Springer, Berlin

10. Kim MS, Uther W (2003) Automatic gait optimisation for
quadruped robots. In: Australasian conference on robotics and au-
tomation, Brisbane

11. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by sim-
ulated annealing. Science 4598(13):671–680

12. Kohl N, Stone P (2004) Machine learning for fast quadrupedal
locomotion. In: The nineteenth national conference on artificial
intelligence

13. Laumanns M, Laumanns N (2005) Evolutionary multiobjective
design in automotive development. Appl Intell 23(1):5570

14. Merkle D, Middendorf M (2003) Ant colony optimization with
global pheromone evaluation for scheduling a single machine.
Appl Intell 18(1):105111

15. RoboCup website http://www.robocup.org
16. Röfer T (2005) Evolutionary gait-optimization using a fitness

function based on proprioception. In: Proc RoboCup 2004: Robot
world cup VIII. Lecture notes in artificial intelligence, vol 3276.
Springer, Berlin, pp 310–322

17. Saggar M, D’Silva T, Kohl N, Stone P (2007) Autonomous learn-
ing of stable quadruped locomotion. In: Lecture notes in artificial
intelligence. Springer, Berlin, pp 98–109

18. Sony AIBO ERS7 robot website http://www.aibo.com/
19. Team Chaos website http://www.teamchaos.es

20. Wasik Z, Saffiotti A (2002) Robust color segmentation for the
RoboCup domain. In: Proc of IEEE int conf on pattern recogni-
tion (ICPR)

Boyan Bonev received a BS De-
gree in Computer Science in 2005
and Ph.D. in Computer Science in
2010, both of them from the Uni-
versity of Alicante. He is currently
Research Assistant with the Depart-
ment of Computer Science and Ar-
tificial Intelligence of the Univer-
sity of Alicante. His research in-
terests concern pattern recognition,
computer vision and mobile robot-
ics. He has participated in the inter-
national RoboCup competition with
the Spanish quadruped-league team.
The topic of his Thesis is feature se-

lection based on information theory. He is co-author of the book Infor-
mation Theory in Computer Vision and Pattern Recognition.

Miguel Cazorla received a BS de-
gree in Computer Science from the
University of Alicante (Spain) in
1995 and a PhD in Computer Sci-
ence from the same University in
2000. He is currently Associate Pro-
fessor with the Department of Com-
puter Science and Artificial Intel-
ligence of the University of Ali-
cante. He has done several postdocs
stay: ACFR at University of Sydney
with Eduardo Nebot, IPAB at Uni-
versity of Edinburgh with Robert
Fisher, CMU with Sebastian Thrun
and SKERI with Alan Yuille. He has

published several papers on robotics and computer vision His research
interest areas are computer vision and mobile robotics (mainly using
vision to implement robotics tasks).

Francisco Martín Graduated in
Computer Science Engineering from
Universidad Rey Juan Carlos in
2002 and received the PhD degree
from the same university in 2008.
Currently he is teaching Robotics,
Operating Systems and Networks
at Universidad Rey Juan Carlos.
His research interests include self-
localization, and control architec-
tures in robotics. He has participed
in RoboCup since 2005 in the 4-
legged league and Standar League.

Author's personal copy

http://www.teamchaos.es
http://www.robocup.org
http://www.aibo.com/
http://www.teamchaos.es


Portable autonomous walk calibration for 4-legged robots 147

Vicente Matellán got his PhD at
the Technical University of Madrid
(1998), worked as Assistant Profes-
sor at Carlos III University (1993-
99) and Rey Juan Carlos University
(1999-2008). Currently he is Asso-
ciate Professor in Computer Science
at the University of Leùn (Leùn,
Spain). His main research interest
include multi-robot systems, robotic
software architectures, artificial vi-
sion, free software, and distributed
systems. He has made over 100 con-
tributions in journals, books, and
conferences in these areas.

Author's personal copy


	Portable autonomous walk calibration for 4-legged robots
	Abstract
	Introduction
	Related work
	Experimental setup
	Learning procedure
	Speed maximization
	Response optimization
	Discussion

	Experimental validation
	Localization enhancement

	Conclusions
	Acknowledgements
	References


