MULTI-CAMERA 3-D TRACKING USING PARTICLE FILTER

Pablo Barrera, José M. Cañas, Vicente Matellán, and Francisco Martín
Laboratorio de Robótica, Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos, Móstoles, Madrid (Spain)
{barrera,jmplaza,vmo,fmartin}@gsyc.escet.urjc.es

Abstract
Determining the 3D location of a moving object, and tracking it from a sequence of different camera images is a classical but still challenging problem. In our approach neither explicit triangulation, nor precise motion model are used; only the colour of the object to be tracked is required. We use a particle filter, where the observation model we have developed avoids the colour filtering of the entire image. Preliminary experiments are presented and lessons learned are commented. The approach easily scales to several cameras and new sensor cues.

1. INTRODUCTION
Cameras are cheap and ubiquitous sensors. Images provide much information about the environment, but usually it takes lot of computing power to extract relevant conclusions from them. One of the basic pieces of information they may provide is the 3D location of an object or person that is moving around the camera environment. Many commercial applications may take benefit from a robust object tracking. For instance, in security applications unsupervised cameras may autonomously track moving persons and trigger an alarm if the person approached to any protected location. Tracking techniques are also used in robotics to cope with self-localization problem [Davison03]. Actually, object tracking and localization share much mathematical background of dynamic state estimation related to the state through a probability model and such dynamism is captured in a motion model

\[ p(X(t)/obs(t)) \]

In short, it estimates the current multidimensional state \( X(t) \), using a collection of sequential observations \( obs(t), obs(t-1), obs(t-2), ..., obs(t_0) \). The observations are related to the state through a probabilistic observation model \( p(X(t)/obs(t)) \). The state itself may be dynamic, and such dynamism is captured in a motion model \( p(X(t)/X(t-1)) \). The sequential nature of the algorithm provides iterative equations, and its sampling nature makes it to manage a set of \( N \) particles to represent the probability distribution over the set of plausible states, \( p(X(t)/obs(t),obs(t-1),...) \). A more rigorous and broad description of probabilistic estimators can be found in [Mackay99, Arulampalam02].

Each particle \( s_i(t) \) represents a state estimate and has a weight \( w_i(t) \) associated, regarding the importance sampling. Global estimates can be made from the whole particle set, for instance choosing that of the higher weight (Maximum a Posteriori) or a weighted mean (Minimum Mean Square Error).

The prediction step, in each iteration of CONDENSATION, samples the motion model for every particle, obtaining a new \( s_i(t) \), and so building a new particle set. In the update step, the weights of all particles are computed based on current images and following the observation model: \( w_i(t) = p(s_i(t)/obs(t)) \). Those particles that are likely given the current observation increase their weights. In the resampling step, a new set of particles is built sampling from the

2. COLOUR BASED PARTICLE FILTER FOR 3-D TRACKING
The most popular technique used in object tracking is Kalman filtering. Monte Carlo sampling techniques improve the estimation performance and system robustness as multiple hypotheses are considered at the same time. Particle filters is a Monte Carlo importance sampling technique and it can be considered as an evolution of more traditional techniques like Kalman filters. It can cope with non-Gaussian probability models and multiple hypotheses.

Our approach uses the CONDENSATION algorithm [Isard98] to estimate location of a coloured object. This is an iterative algorithm, with three steps in each iteration: prediction, update, and resampling. CONDENSATION is a Bayesian recursive estimator that uses Sequential Monte Carlo Importance Sampling.

In short, it estimates the current multidimensional state \( X(t) \), using a collection of sequential observations \( obs(t), obs(t-1), obs(t-2), ..., obs(t_0) \). The observations are related to the state through a probabilistic observation model \( p(X(t)/obs(t)) \). The state itself may be dynamic, and such dynamism is captured in a motion model \( p(X(t)/X(t-1)) \). The sequential nature of the algorithm provides iterative equations, and its sampling nature makes it to manage a set of \( N \) particles to represent the probability distribution over the set of plausible states, \( p(X(t)/obs(t),obs(t-1),...) \). A more rigorous and broad description of probabilistic estimators can be found in [Mackay99, Arulampalam02].

Each particle \( s_i(t) \) represents a state estimate and has a weight \( w_i(t) \) associated, regarding the importance sampling. Global estimates can be made from the whole particle set, for instance choosing that of the higher weight (Maximum a Posteriori) or a weighted mean (Minimum Mean Square Error).

The prediction step, in each iteration of CONDENSATION, samples the motion model for every particle, obtaining a new \( s_i(t) \), and so building a new particle set. In the update step, the weights of all particles are computed based on current images and following the observation model: \( w_i(t) = p(s_i(t)/obs(t)) \). Those particles that are likely given the current observation increase their weights. In the resampling step, a new set of particles is built sampling from the
weighted distribution of current particles. The higher the weight, the more likely that particle appears in next set. Full details are provided at the original paper [Isard98].

In our approach the state to be estimated is the 3D location of the object \(X=[x,y,z]\), so the particles have the shape of \(s_i(t)=[x_i(t),y_i(t),z_i(t)]\), that is, they are 3D positions. The observations are just the colour images on M cameras and the motion model is just a simple one that randomly moves the particles through the 3D-space following a Gaussian distribution for each step.

### 2.1. Movement model

Using an approach similar to [Davison03], we have employed a weak motion modelling, in order to accommodate any real movement of the object. This provides robustness to the tracking algorithm as it avoids the need of a precise movement modelling to perform properly.

The motion model is a Gaussian distributed one, with the same typical deviation \(\sigma_m\) for \(x, y,\) and \(z\)-axis. It is implemented adding Gaussian noise to each component of the particle. There is no privileged motion direction, as the object may equally move in any of them. The size of \(\sigma_m\) has influence on the particle speed while walking through the state space.

### 2.2. Observation model

The update step gives the new weights of the particles according to the last sensor observation: \(w_i(t) = p(s_i(t)|img_m(t))\). Our observation model is color based and works with any number \(M\) of cameras. It takes each camera separately, treating them as if they were independent observations and so multiplies all the partial conditioned probabilities:

\[
    w_i = \prod_{m=1}^{M} p_m(s_i(t)|img_m(t)) \tag{1}
\]

Individual conditioned probabilities like \(p_m(s_i(t)|img_m(t))\) are computed as follows. First, we project the 3D-particles into the corresponding image plane using a pinhole camera model. We assume cameras have no distortion.

- If such projection falls outside the image limits, then
  \[
  \text{outside} : p_m(s_i(t)|img_m(t)) = 1/25 \tag{5}
  \]
- If the projection falls inside the image limits, its vicinity is explored to count the number \(k\) of pixels with a color similar to the target color in the HSI space. The vicinity is a 5x5 window around projected pixel. This can be seen in figure 1. The equation (6) assigns a probability proportional to \(k\). To avoid probability locks with zeroes and to tolerate occlusions, \(k\) is set to 1 even if no pixel matches the target color description.

\[
  \text{inside} : p_m(s_i(t)|img_m(t)) = k/25 \tag{6}
  \]

Figure 1: 5x5 vicinity window for observation model computation

The observation model in (1) clearly rewards those 3D locations that are compatible with several cameras simultaneously. In the case of two, the 3D locations compatible with one camera but which project badly in the other are score poorly, because \(p_1(s_i(t)|img_1(t))\) or \(p_2(s_i(t)|img_2(t))\) are set to a minimum, and that keeps the \(w_i(t)\) at low values. This combined reward will lead the particles to the object position as only there the particles project correctly in both images.

Another advantage of this observation model is that it avoids the need to color filtering of the entire image. Depending on the number of particles this can be very convenient because it reduces the number computations. In addition the observation model does not require other time consuming task like segmentation in the images, the search for salient points or correspondences between images.

Our approach requires calibrated cameras, but no back-projection or triangulation is performed. Only the forward projections, from 3D particles into image planes, are used. As mentioned before, the observation model rewards those 3D locations that are color compatible in most of the images. This may include more space areas than the one where the object really is but the particle filter can cope with this kind of ambiguity and converge to real object position.

The developed algorithm is a true multi-image algorithm: there is no privileged camera, all images are treated equal and it may be used with an arbitrary number of cameras.

### 3. EXPERIMENTS

Experiments with two cameras have been conducted in our laboratory. The observation model had been configured to track any pink object in a volume of eight cubic meters. The cameras are two webcams providing 320x240 images, which have been calibrated using OpenCV library. Their external parameters like absolute position and orientation have been manually adjusted using a tape measure and projecting an absolute 3D grid into the images.

The particle filter has been tuned to 200 particles, and a typical deviation \(s_m = 0.06\) (m). A typical filter iteration including all the prediction, update and resampling steps...
takes around 5 ms, on a Pentium IV, 2.7 GHz, which is enough to real time performance.

Particles are randomly initialized in a cube of 2x2x2 meters. Then the system starts to search a pink object in a random walk over the space as particles spread following the Gaussian motion model. When the object is detected in one image the particles start to concentrate on that camera line of sight. Following that line particles start a non-explicit epipolar-constrained search over the other camera until the real 3D positions is finally found (the object is found in both images). The complete process is shown in figure 2. The figure displays particle projection in both images at three different times. At that moment particles’ projections are coherent in both cameras and the remains stable around this point. Once the population has converged, smooth movements of the object are successfully tracked in any direction. It can be noticed that convergence of the whole population speeds up as soon as some particles enter into the ball projection, due to the resampling step of the filter.

Manual measures of the real object position have been conducted using a metric tape to compare they with the system’s results. In all positions of the considered space, about eight cubic meters, the error was under 5cm. These results are sensible to extrinsic camera parameters initialization. If these parameters are not correctly measured, there can be a misalignment between the real space and the particle space that conducts to wrong estimation on object positions or to convergence only in one image at the time.

The particle filter maintains the estimation of the object positions and it makes predictions about its movement. This permits occlusions of the object in any cameras or all of them. When the system cannot see the object in the images it grows the particle population to find the object until it finds again in one or both images.

4. CONCLUSIONS AND FURTHER WORK

The work presented here summarizes the results on particle filter for object 3D tracking based on color information. The algorithm does not need any explicit triangulation or stereo matching at all, and it scales to an arbitrary number of cameras. The observation model used avoids the color filtering of the whole images and looks at the vicinity of the particle projections to estimate the particle’s likelihood.

The results are promising, as convergence has been validated in real experiments in an eight cubic meters volume and the algorithm implementation exhibits real time performance. The real location of the object is a stable point for the particle cloud, and the particles successfully track smooth movements of the object. Further improvements of the algorithm are coming. First, the use of more than two cameras simultaneously, in order to expand even more the volume inside which objects are successfully tracked. Second, we are also exploring some proposal distributions inside the filter, which hopefully would increase convergence speed of the cloud and its recovery capacity in case of losing the object. Third, we want to extend the system to track more than one object simultaneously.

5. ACKNOWLEDGMENTS

The work of Pablo Barrera has been supported by Universidad Rey Juan Carlos. The work of José M. Cañas, Francisco Martín and Vicente Matellán has been partially supported by the Spanish MEC project ACRACE, (DPI2004-07993-C0301).

References


