
Localization issues in the design of a humanoid goalkeeper
for the RoboCup SPL using BICA

Vı́ctor Rodrı́guez, Francisco J. Rodrı́guez, and Vicente Matellán
Grupo de Robótica, Depto. de Ingenierı́a Mecánica, Informática y Aeroespacial

E.I.I.I Universidad de León
León, Spain

Email:vrodrm01@estudiantes.unileon.es, fjrodl@unileon.es, vicente.matellan@unileon.es

Abstract—This article exposes the localization issues faced
during the implementation of a humanoid goalkeeper to
take part in the RoboCup SPL standardized soccer robot
competition.

For this task, we have used BICA, a state-driven,
component-based architecture created by our counterparts
in the URJC, to allow a much easier behavior design process.

The use of BICA let us choose different self-localization
methods in configuration time, and the possibility of using
none in running time if some type of error appears.

Keywords-RoboCup, localization, behavior programming,
goalkeeper, Nao

I. INTRODUCTION

The worldwide-known RoboCup [7] competition, was
established in 1997 to promote research in the robotics
field. It is comprised of several events, where RoboCup
Soccer is the most popular by far. To be precise, RoboCup
Soccer has sub-events using different types of robots,
ours being Standard Platform League (SPL [8]), in which
teams must use the same robot model, currently the Nao
Humanoid.

The RoboCup has gained much recognition because it
represents a good opportunity for either testing existing
robotic solutions (both software or hardware ones), or
developing new ones in a controlled, but not limited,
common environment. In our case, we play in SPL soccer.
Matches in this competition take place in a well defined
environment but it is still complex environment because,
while playing, a total of 8 robots (4 per team) will be
competing for the ball, trying to score, etc.

As we will see later, the use of a good localization
system is mandatory to implement winning strategies in
the SPL. Static objects (goals, lines, etc.) on the field
may be used as landmarks for the localization system, and
almost every team does. But there are many factors like
unexpected collisions, visual obstruction by other robots,
etc. that could make the self-localization system fail, so
robots should be able to fulfill their roles without it.

The BICA architecture [5] was designed to abstract
many problems in the development of software control
systems for the Nao by offering to the programmer a
library of independent and multipurpose components al-
ready implemented, letting him or her focus on writing
a good behavior instead of reimplementing existing algo-
rithms.

This article describes BICA’s multiple localization com-
ponents, and their use in designing a goalkeeper for the
RoboCup SPL. We will show how using BICA facilities
the goalkeeper can be designed to use the self-localization
methods or not, even to decide during the game if using
the localization information or not.

As we will see in next sections all the components are
implemented a priori and are available at run time. At a
given moment the system can choose between them and
this will allow to our robot to deploy the better actions in
each situation.

The rest of the paper is organized as follows, next
section describes the basis of RoboCup regulations, the
robot used and the BICA architecture. Section III is
devoted to the localization components included in BICA,
Section IV to the goalkeeper design and final section to
the discussion of the approach.

II. CONCEPTS

A. The environment

All field specifications and match rules can be found
in the book that is published every year [4] by RoboCup.
The football field where the robots will play has fixed
dimensions and layout, the figure 1 shows the dimensions
of the field.

Figure 1. Diagram to scale of the football field used in SPL (dimensions
in mm), as seen in the official rulebook.

As it can be seen, the field has a number of lines at spe-
cific locations that is used by the localization components



to calculate the position of robot on the field. The small
choice of colors also allows to easily distinguish between
the different elements, like goals. The ball itself is a Mylec
orange street hockey ball, 65 mm in diameter, according
to the book.

B. The robot

The robot that will be used by all the teams in SPL
league is Nao (figure 2), an humanoid robot built by the
french Aldebaran Robotics. The full list of features is
available in [6], so the advanced technical details will not
be discussed here.

The robot has two cameras mounted on its head, but
only one can be used at a given moment, and they offer a
limited resolution to the detriment of speed. One is located
higher and offers a view of the field, and the other is better
for controlling the ball as it points lower.

Nao is also equipped with ultrasonic, obstacle-detecting
sensors; speakers and microphones for team coordination
(via an integrated speech synthesizer); and wireless capa-
bilities, which is the only feasible method for communi-
cation while playing.

Figure 2. Nao robot depicted with both team markers, as seen in the
official rulebook.

Each team will be made up by 4 robots: a goalkeeper
and three field players. Colored waistbands must be worn
by the robots, to help visual identification. All robots
must obey the wireless commands of a state-machine
GameController running on a PC controlled by a human
referee to signal penalizations to robots, goals, etc.

C. BICA

We did not design our player from scratch. We have
used an SDK named BICA that works as a proxy between
the framework provided by Aldebaran, and the final ap-
plication. This SDK, Behavior-based Iterative Component
Architecture (BICA, [5]), abstracts from many low level
details so users can concentrate on writing and debugging
medium/high level robot behaviors. BICA has been devel-
oped by the Robotics Research group from the University
of Rey Juan Carlos of Madrid (URJC), our partners in the
SpiTeam.

BICA is a component and state-based software package.
It is divided in Components, each one providing a different
service or feature. For instance, there is a component that

takes care of ball detection [2], another for goals detection,
several more for global localization, ball kicking, etc.
Developers can also create their own components

These components can be loaded or discarded in real
time, and BICA can dynamically assign processor power
to the active ones. Thanks to this, the amount of power
and CPU consumption is kept at minimum, and every
component is called as frequently as Nao’s hardware is
able to manage.

Every cycle, all activated components are stepped in
a controlled manner. This is implemented by calling a
function in a iterative way. The name of this function is
the same in every component: step().

Figure 3. BICA design diagram for a simple goalkeeper
behavior. Big yellow circles are states, dark blue arrowed
spheres are transitions. Big, discontinued, purplish blue
spheres represent BICA component dependencies.

Components can be organized into hierarchies to im-
plement more sophisticated behaviors. When the robot
needs to run a task made up by several components
organized in that hierarchy, the step() function in the
higher component triggers a tree of calls to each step()
function in the components below. Every component can
also request the activation of another non-active one. This
way, BICA takes care of stepping dependencies before the
code that requires them is stepped on its own.

A BICA component is made up by states and transitions
that connect states. That is, a BICA component is a finite
state automata. Each state consists in a piece of code run
only when the component has been ”stepped”, and the
state is active.

Only one state may be active at any time. The code of
the active state will be the one being executed every time
the component is stepped. Transitions from the currently
active state are evaluated at every step to decide whether
to switch to another state or remain in the current one.
Transitions are basically boolean decisions, that can be
complex functions or just a single boolean variable.

Components can be designed using VIsual COmponent
DEsigner (VICODE) tool (figure 3). As we can see, left



Figure 4. Coordinates given by BICA are team-independent. Position (0,0) marks always the center of the field. Increasing X-axis values get nearer
the opponent’s goal. Increasing Y-axis values are nearer to the right touchline.

side shows a fixed palette of elements lets us draw and
interconnect states, transitions and dependencies . The
editor also provides a way to input code directly, and to
set automatically timers for time-controlled transitions.

When saving a Component, VICODE automatically
generates the corresponding C++ code from the diagram
creating the skeleton of C++ classes that can be completed
by the designer. Human-written code will be kept the next
time the Component is edited. When the code is fully
implemented, it will be compiled optimized for the robot
CPU and loaded in the robot. Another tool made in Java,
named JManager, allows us to easily interact with the
components running in the robot from our PC.

III. LOCALIZATION SYSTEMS

The basic behavior of a goalkeeper is prevent the ball
ends inside the goal. To do this, the robot should try to
stay under its own goal. The robot could move its body
between both posts and take position in front of the ball
to do this. This seems simple, but some problems arise:

• What would happen if our robot was to be carried
away from the goal? (e.g., grabbed by the referee
after a foul, or pushed by another robot)

• Should the robot move away from the goal,to try
to clear the ball in case it came near, but not close
enough for a direct kick?

The first one is the worst by far. If our robot is not
able to navigate through the field, its performance will be
very poor. For instance, at the beginning of the match,
both teams have 45 seconds to get their position in the
allowed areas. If they fail to do so, the referee places
them manually on preselected spots, worst than the ones
allow by the rules if the robots are able to self-position
themselves.

This problem is know as the kidnapped robot. Ideally,
the localization system should be able to estimate where
our robot is in a given moment, and recover quickly after
a “kidnapping”.

The second problem is related to the strategy we want
to use in the game. If we want to play an offensive match,
but our localization system is too weak, we cannot think
in kicks far away from our goal position. Whereas if our
localization system is well implemented we can deal other
movements far from our goal.

BICA has different implementations of localization al-
gorithms, and we use them to get distances and bearings
to all interesting components during the game.

To prevent confusions and minimize the code, all meth-
ods follow the same conventions concerning the coordinate
system. A right-hand system is employed so, regardless
of the robot’s team, decisions and tactics need not to
be tailored for each, as it can be seen in figure 4. In
the same way, all localization components follow this
coordinate system except the basic sistem, this gets a
simple localization from opponet and own goal position.

We have to choose between how the localizations sys-
tems are launched. If the choice is going to do it at running
time, all the potentially desired localization components
have to be loaded and launched int he robot.We will find
two problems with this system. If the inner estimation
error of each method is going to be used to decide
which one is used, all the components have to be active
and for this reason all tree of calls for each component
(step()) are made. This means that it will consumes
a lot of processing power to keep all components alive.
Other problem, can be find when we stop and activate
between localization methods because they have to trigger
the system from scratch and this means that a lot of time
will be used to initialize components.

Regarding the localization methods included in BICA,
there are three different components available:

A. FMK

FMK [14] stands for ”Fuzzy MarKov” and was the lo-
calization method developed originally in the TeamChaos,
the previous team where our group was integrated before
making up SpiTeam.

In FMK, the field is represented by a grid G so that
G(x, y) represents the probability of finding the robot at a
given position (x, y). The cells contains information of the
probability that the robot is in that cell, and information
on the most probable orientation range, which means that
it is actually a 2 1

2 grid because only one orientation is
represented.

This information is represented by a diffuse trape-
zoid (Fig. 6). This trapezoid is defined by the tuple
(θ, δ, α, h, b). Intuitively, if h is low, the probability of
being in this cell is low. If h is high, it is very probable



Figure 5. BICA design diagram for a total goalkeeper behavior.

that the robot is in this position. If the trapezoid is wide
(is large), great uncertainty exists about the orientation
of the robot. If the trapezoid is narrow, or even has
triangular form (because is practically null), the orientation
uncertainty is so low that we can affirm that the robot
orientation is. θ

Figure 6. Fuzzy trapezoid

B. n-EKF

The Extended Kalman Filter (EKF) is one the most
popular tools for state estimation in robotics [9]. It is
a local localization method whose strength relies on its
simplicity and its low computational complexity. However,
this method is not able to self-locate the robot quickly
when starting from a situation of total uncertainty. Neither,

is it able to recover from situations of high error in the
estimations, nor from the manual change of the position
of the robot during the game. This is due to its mono-
modality, that is, it only maintains a single estimation of
the position of the robot.

Using the n-EKF[12] our team has tried to maintain sev-
eral hypotheses, each one represented by an independent
EKF. The number of EKF filters will not keep constant.
It can be dynamically modified up to a maximum limit.
Initially, there will not be any active EKF. Every time that
the global localization system seems reliable, but no filter
close enough to the position estimated by it, a new EKF
filter is created. The new EKF filter is initialized to the
center of the cell position where the global systems is, and
the uncertainty is set to the one associated with that cell.

C. 3D reconstruction

The third method available in BICA is the one based
in the 3D reconstruction of the goals [15] through a color
based geometrical segmentation method. It uses an HSV
color filler, an edge filter, and Hough transformation to
detect the post and crossbar lines. Afterwards, the position
of the robot with respect to the goal is calculated exploiting



3D geometric properties.
Another methods have also been tested on the our team

platform, as for instance [16] based on genetic algorithms,
It has not been included in the standard distribution of
BICA due to its high computing power requirements.

D. Experimental evaluation of localization algorithms

In this paper we have not tried to describe the insights of
the different localization algorithms, but the use of BICA
to integrate them, and its use to implement a goalkeeper
behavior.

There are several evaluations of the different local-
ization methods for the RoboCup in the literature. For
instance, in Hessel bachelor thesis [19] a quick review
of all localization methods used in Robocup 2011 can be
found, among them we can found SpiTeam localization.

In [12] we can see a depth comparison between the
methods available on BICA on the four legged league,
the ancestor of the current SPL league.

Finally, regarding Kalman-based methods, in [18] a
good review can be found.

Our choice of the localization algorithm is usually
made at design time. If we look at the diagram in
figure 5 we have all the desired component necessary to
deploy the goalkeeper behavior. Two of the dependencies
(discontinued, purplish blue spheres) represent the NEKF
(complex) and the SearchNet (basic) localization systems
implemented. We load only these ones to save energy
consumption and to avoid not covered states where the
robot can not find their localization (for instance if the
goalkeeper is surrounded by robots).

IV. ROLE OF LOCALIZATION IN A ROBOCUP GOALIE

Localization ability plays a big role during RoboCup
matches. Localization is even more ”necessary” for the
goalkeeper than for the other players, otherwise some of its
actions would be constrained. Other players do not need to
know their exact positions on the field to look for the ball
and kicking it towards the opponent goal. But the goalie
has to remain into a critical area where a misplacement
could cost victory.

The simplest solution would be to add extra transitions
from every state, checking if the distance to the goal is
greater than a fixed value. Then, the robot should block the
ball whenever it came too near (another parameter to be
tunned). The algorithm consists in drawing a line between
the ball and the center of its goal, follow that line towards
the ball, not leaving the area. If the ball gets closer enough
it has to kick it out towards the opponent goal.

A more risky situation appears if the ball is close to
the goalie, but not enough for kicking, and outside the
set save area where the goalkeeper can go (the parameter
controlling the maximum distance). Ignoring the ball could
let an opponent approach it and score a goal. But, if the
robot walks out to clear it, the goal will be exposed.

Time constrains are also critical, for instance, if the
robot is allow to go to the ball in the previous situation,
but if it accidentally moves the ball further away (e.g.,

with its feet), it can continue walking towards it going
far away from the goal. Even if it means to increase the
overall complexity, we must make sure that our robot does
not “insist” to carry out an action when it is clear that it
can not be achieved, or that it has no effect. Some inverse
hysteresis has to be considered when defining the states
of the component.

Finally, we have not discussed the navigation system.
For the goalie we are using a simple control in velocity.
We tried to be always faced to the ball, first with the head,
then we align the body, so the navigation algorithm is
straightforwards. Inside the area the goalkeeper cannot be
touched by the opponents, so we do not need to implement
an avoidance behavior. There are also no problem to bump
into a teammate because they are not allowed to enter its
own area (an the referee will remove them if entering).
We only should worry about collisions if going out, but
the goalie will only go out if it is the closest to the ball,
so it has not to worry about penalties.

A. Without localization

If no localization system is implemented, or the readings
are not precise, our goalie will have to work without it.
This is actually feasible, but the results are less than ideal.
If no visual element is present in Nao’s visual field (goals,
ball, lines...) in a given moment, the robot is considered
lost. This can happen when it is looking in the wrong
direction or when another player block our view.

The first approach of our goalkeeper in 2009, was
developed without any localization system [17] and was
tested in Robocup 2009. The robot implemented a simple
system to remain under its own goal bar, taking care of
how many steps had run left and right. It also has reactive
actions to saving goals when the ball was near the goal.

The other actions of the goalie worked in the same
way, except by kicking the ball. The only way to control
the movements of the robot would be either to count the
number of steps, or the time after leaving the goal, by
using a timer and a direction.

B. Using localization

In case of using a localization, the given error in the
calculated position is small and the goalie behavior design
is much more simple and allow us to do creative play.

Our goalkeeper components are receiving constant data
about its current position on the field. BICA has functions
that let us specify a precise location where the robot will
try to move to. After adjusting manually its bearing (which
is also given by the localization system), Nao should place
itself quickly under the goalbar. It lets to look at the center
of the field, so finding and tracking the ball will be easier.

The approach used in 2011 is to draw two virtual areas.
The first one marks the limits that our robot should not
pass while defending the goal. The second one, a bigger
area should be used when the ball comes too near and the
robot gets out of the goal to clear it. If the localization
data is reliable, the goalkeeper would get back in position
after crossing any area.



V. CONCLUSION AND FURTHER WORK

This paper has tried to show the basic problems related
to autonomous self-localization of autonomous humanoids
in the RoboCup competition. We have shown in particular
how the goalkeeper behavior can be implemented with or
without localization with BICA framework and how the
use of localization is a must if a competitive behavior is
desired. We have also summarized the localization meth-
ods included in the standard distribution of our software.

Regarding further work, an empirical evaluation of
the different methods provided by BICA has not been
done in real game conditions. This requires the design
of a rigorous methodology for evaluating localization in
different situations, in particular, this require offline tools
for recording a match a reproducing the same conditions
using a different localization component. Anyway, as the
information provided by the localization is used to take
decisions it is not possible to reproduce exactly the same
conditions.

Also we would like to add a different navigation skills,
for instance walking backwards facing the ball, or more
in general, a positional navigation while tracking the ball.

ACKNOWLEDGMENT

We want to express our gratitude to the work developed
by the SpiTeam SPL Team, and specially to Dr. Francisco
Martı́n for his work on localization, Dr. Carlos Agüero
for his work on BICA, and Dr. José Marı́a Cañas for the
general design of the architecture, as well as to the rest of
our teammates for their contributions.
This work has been partially supported by Cátedra
Telefónica - Universidad de León (grant CTULE11-2).

REFERENCES

[1] Francisco Martı́n Rico, Carlos Agüero Durán, José Marı́a
Cañas , Eduardo Perdices, Humanoid soccer player design.
In ”Robot Soccer”. Edited by: Vladan Papic, pp 67-100.
2010. ISBN 978-953-307-036-0.

[2] Francisco Martı́n Rico, Carlos Agüero Durán, José Marı́a
Cañas Follow ball behavior for an humanoid soccer player.
X Workshop de Agentes Fı́sicos, Cáceres, September de
2009.

[3] José Marı́a Cañas, Domenec Puig, Eduardo Perdices,
Tomás González, Visual goal detection for the
RoboCup Standard Platform League. Available; http:
//www.robotica-urjc.es/publicaciones/waf2009-goals.pdf,
X Workshop de Agentes Fı́sicos, Cáceres, September de
2009.[Aug, 14, 2011].

[4] RoboCup Technical Committee, RoboCup Standard
Platform League (Nao) Rule Book. Available: http:
//www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf,
Germany, March 23, 2011.[Aug, 10, 2011].

[5] Francisco Martı́n Rico, Behavior-based Iterative Compo-
nent Architecture. Available: http://www.robotica-urjc.es/
apuntes/BICA.pdf, Móstoles, Spain, December 15, 2009,
[Aug, 20, 2011].

[6] Aldebaran Robotics. Nao Academics Data Sheet. Available:
http://www.aldebaran-robotics.com/en/node/1166, France,
2011, [Aug, 20, 2011].

[7] RoboCup. Internet: http://www.robocup.org/,[Aug, 23,
2011]

[8] Standard Platform League. Internet: http://www.tzi.de/spl/
bin/view/Website/WebHome,[Aug, 20, 2011].

[9] Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilis-
tic Robotics, MIT Press, ISBN: 0262201623, 2005.

[10] José Marı́a Cañas y Vicente Matellán. From Bio-inspired
vs. Psycho-inspired to Etho-inspired robots. Robotics and
Autonomous Systems. Vol.55, Num. 12, pp. 841-850.
DOI:10.1016/j.robot.2007.07.010

[11] J.M.Cañas, J. Ruı́z-Ayúcar, C. Agüero, F. Martı́n. JDE-
neoc: component oriented software architecture for
robotics. Journal of Physical Agents, Volume 1, Number
1, pp 1-6, 2007.

[12] Francisco Martı́n , Vicente Matellán, José Marı́a Cañas
y Pablo Barrera. Localization of legged robots based on
fuzzy logic and a population of extended kalman filters.
Robotics and Autonomous Systems. Vol.55, Num. 12, pp.
870-880.doi:10.1016/j.robot.2007.09.006

[13] Renato Samperio, Housheng Hu, Francisco Martı́n , Vi-
cente Matellán. A hybrid approach to fast and accurate
localisation for legged robots . Robotica International,
Cambridge Journals. Vol. 26, Num. 06, pp. 817-830.
DOI:10.1017/S0263574708004414.

[14] David Herrero-Pérez, Humberto Martı́nez-Barberá,
Alessandro Saffiotti, Fuzzy self-localization using natural
features in the four-legged league, in: Lecture Notes in
Computer Science, pp. 110-121. vol. 3276, 2005,

[15] J.M.Cañas, E. Perdices, T. González, D. Puig. Recognition
of Standard Platform RoboCup Goals. Journal of Physical
Agents. Volume 4, Number 1, pp 11-18, 2010. ISSN: 1888-
0258

[16] J. Martı́nez-Gómez, J. A. Gámez, I. Garcı́a-Varea and
Vicente Matellán. Using Genetic Algorithms for Real-Time
Object Detection. RoboCup 2009: Robot Soccer World Cup
XIII Lecture Notes in Computer Science, 2010, Volume
5949/2010, 215-227,

[17] Juan F. Garcı́a, Francisco J. Rodrı́guez, Vicente Matellán,
Camino Fernández. Designing a minimal reactive goalie
for the RoboCup SPL X Workshop en Agentes Fı́sicos
(WAF’2009). Cáceres (España), September 2009.

[18] Michael J. Quinlan and Richard H. Middleton, Multi-
ple Model Kalman Filters: A Localization Technique for
RoboCup Soccer in RoboCup 2009: Robot Soccer World
Cup XIII, pp 276-287

[19] Hessel van der Molen and Arnoud Visser. Bachelor The-
sis: Self-Localization in the RoboCup Soccer Standard
Platform League with the use of a Dynamic Tree. Avail-
able: http://hesselvandermolen.dyndns.org/BachelorProject/
comparisonDoc.pdf,[Aug, 23, 2011]


