
JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 2, MAY 2010 1

Design an evaluation of RoboCup humanoid goalie
Juan F. Garcı́a, Francisco J. Rodrı́guez, Camino Fernández, and Vicente Matellán

Abstract—In this article we describe the ethological inspired
architecture we have developed and how it has been used to
implement a humanoid goalkeeper according to the regulations of
the two-legged Standard Platform League of the RoboCup Feder-
ation. We present relevant concepts borrowed from ethology that
we have successfully used for generating autonomous behaviours
in mobile robotics, such as the use of ethograms in robotic pets
or the ideas of schemata, or the use of fixed actions patterns
to implement reactivity. Then we discuss the implementation of
this architecture on the Nao biped robot. Finally, we propose a
method for its evaluation and validation and analyse the results
obtained during RoboCup real competition, which allowed us to
test first hand how it worked in a real enviroment.

Index Terms—reactive, attention, vision, humanoid, schema

I. ROBOTICS CONTROL ARCHITECTURES IN LITERATURE

GENERATING autonomous behaviours in mobile robotics
is really a complex problem. In this section we present a

non in-depth outline about those robotics control architectures
close to our research. We are going to be neither exhaustive,
mainly because it would be impossible to describe all control
architectures in just one section, nor hierarchycal, since there
would be too many criteria to take into account.

Summarizing the complex history of the AI, we can state
that two main schools of thought have coexisted, the subsym-
bolic one, interested on modeling intelligence in a level similar
to neurons; and the symbolic AI, which models knowledge and
planning in data structures that make sense to the programmers
that build them. Another way of explaining the difference
between both schools is referring to their foundations: Biology
in the subsymbolic AI, and cognitive psychology in the
symbolic AI [9]. Hybrid systems are a pragmatic approach,
where ethology based systems can be included because they
sucesfully integrate deliberative and reactive perspectives in
natural autonomous systems.

Hybrid architectures intend to combine reactive and de-
liberative control, and usually consist of three components:
a reactive layer, a planner, and a layer that links the other
two. Well known examples of this kind of architecture are
AuRA[1], which integrates a A∗ planner with schema-based
controllers [2], and PRS (Procedural Reasoning System) [6]
based on least commitment via plan elaboration postponement.

Teleo-Reactive (TR) program formalism proposed by Nils-
son [28] falls also under Hybrid control category. Teleo-
reactivity in dynamic environments implies a short sense - act
cycle. Robots are able react rapidly to communly occuring
situations (such as crash avoidance or refueling) but their
behaviours are also influenced by their goals (hence “teleo”).

Juan, Francisco, Camino, and Vicente are with Departamento de Ingenierı́a
Mecánica, Informática y Aeroespacial Escuela de Ingenierı́as Industrial e
Informática, Universidad de León, 24071 León Web: http://robotica.unileon.es
e-mail:{jfgars, fjrodl, camino.fernandez, vicente.matellan}@unileon.es

Opportunistic architectures are a subset of the hybrid archi-
tectures that take its name from Barbara Hayes-Roth approach
to hybrid control [7]. The agents architecture on her system
was also made up by three components: an event-triggered
reactive level, an strategic planner, and a control process in
charge of matching triggered actions with the generated plan.
A similar architecture is used in O-Plan [8] where the term
“agent” is used to name each of the three modules of the
system.

Another implementation of these ideas are RAPs (Reactive
Action Packages) proposed by Firby [5]. RAPs were designed
to allow the reactive execution of symbolic plans. In this way,
each RAP defines different alternatives of execution depending
on the environment, and an agenda is used to select the next
action to execute. Another approach is the TCA (Task Control
Architecture) by Simmons [18], which integrates symbolic
plans with real-time restrictions as well as reactive behaviors
triggered as exceptions.

In the RoboCup domain, Saffiotti [21] presented the Think-
ingCap architecture. This architecture was based in a fuzzy
approach, extended in [24]. The perceptual and global mod-
elling components managed information in a fuzzy way and
were used to generate the next actions.

Also in the RoboCup domain, the architecture proposed
by Manuela Veloso et al[22] shows an hybrid hierarchical
behaviour-based architecture. This architecture was divided in
levels. The upper levels set goals that the bottom level had to
achieve using information generated by a set of virtual sensors,
which were an abstraction of the actual sensors.

Another successful approach in the RoboCup was the one
used in the German Team[23] that proposed a four levels
architecture: perception, object modelling, behaviour control,
and motion control. The execution starts in the upper level
perceiving the environment and finishes at low level sending
motion commands to actuators. The behaviour level was made
up of several basic behaviours implemented as finite state
machines. These finite state machine were written in XABSL
language [25], that was interpreted at runtime and let change
and reload the behaviour during the robot operation.

The foundation of the work presented in this paper is JDE
(Jerarquı́a Dinámica de Esquemas) [9], an etho-inspired archi-
tecture where behaviour is organized as a dynamic hierarchy
of independent schemata.

Many other concepts borrowed from Ethology have been
used in robotics. For instance, homeostasis, proposed as
mechanisms for action selection by T. Tyrrell [16] ; or the
movements of bees [14], capable of returning to their beehive
using the sun as compass for global navigation; or the flies
balancing optical flow in both eyes to local navigation [4];
gestalt perception, and the use of visual perceptive invariants,
as the ones discovered in the cormorant fishing [15], that can



2 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 2, MAY 2010

make easier the goal of developing robotic behaviours, etc.
These works have also been applied to modern humanoids
[3].

Besides the theoretical description of the architecture, which
we will make in the next section, we made a development
on a robot in a real environment. The choosen place was
the RoboCup (Robotic soccer WorldCup) is an international
research and education initiative, which has put forward a stan-
dard problem to promote the research on artificial intelligence
and intelligent robotics.

In particular, the work described in this paper has been
tested during the German Open 20091 in April 2009 and
Robocup 20092 in June-July 2009. In this league all teams
use the same hardware platform, the Nao robot (see figure 1).
This robots are manufactured by Aldebaran Robotics, so the
focus of this competition is on the software controlling the
robot.

Fig. 1. Nao robot (figure copyrighted by Aldebaran Robotics)

Nao robot is a 21 degrees of freedom humanoid, whose
height is 57 cm. and its weight is around 4.5 Kg. It has two 30
fps video cameras located in the forehead and in the mouth,
each one with a maximum resolution of 640x480, but they
cannot be used simultaneously. The switch between cameras
takes too long and the field of view is scarcely overlaped so
they are not capable of stereo vision.

Control is managed onboard using a x86 AMD Geode chip
at 500 MHz, 256 MB of SDRAM memory and a standard
1 Gb in flash memory that can be upgraded. It also has
got WiFi (802.11g) and Ethernet connections. Concerning the
sensors, apart from the cameras, it has 2 gyroscopes and 3
accelerometers, 2 bumper sensors in the feet, and 2 ultrasonic
sensors in the chest.

The rest of the paper is organized as follows. Second section
describes the architecture we propose. In the third section we
present a software implementation for our architecture. In the
fourth section, we propose a method to analyse and validate
our proposal. Finally, in the last section, the results obtained
with this architecture and its performance in the RoboCup

1http://www.robocup-german-open.de/en
2http://www.robocup2009.org/

German Open and in the Robocup 2009 Graz are analysed
and also future works are enumerated.

II. AN ETHOLOGICAL INSPIRED ARCHITECTURE

Our architecture is based on etholgical principles that ex-
hibit the same features of the hybrid ones previously described,
that is, deliberative and reactive capabilities. The two main
principles of this architecture are the decomposition of the
control problem into behavioural units named components, and
the generation of behaviour by building dynamic hierarchies.
Both are detailed in next sections.

A. Components

Our approach is based on the assumption that complex be-
haviour can be obtained by combining simpler “components”
inspired by ethological schemata as defined in [10]. These
components perform a specific task in an iterative way and at
a controlled frequency. They may send commands to actuators,
process data from sensors, or activate/deactivate and modulate
other components creating a hierarchy.

When activated, a component creates its data and processing
structures and starts its iterations. It can keep its state from one
iteration to another or change it depending on its functionallity
and the system stimuli (internal or environmental information).
When a component is deactivated, all its descendants (all the
components the currently component becoming inactive had
activated) must also be finished.

A group of components which perform subroutines of the
same task are grouped in so called controllers which function-
ality is explained in section II-C and their implementation in
section III.

B. Dynamic Hierarchy

Components are organized in hierarchy in order to generate
more complex behaviours. High level components activate
low level components, and all of them run concurrently. The
hierarchy is dynamic in the sense currently active modules will
be different depending on the situation. Only one schema per
level can be active at any given time and, before activating
any component, an ancestor of it in the inmediatly superior
level has to be already active. If a component is deactivated,
all its descendants will also become inactive. Each schema or
a whole branch of linked schemata can be activated (or deac-
tivated) at any given time to achive the desired functionality,
completly deactivating a previously working set of schemata
if nessesary. This makes an improvement to the initial JDE
assumtion which establishes that every single schema in a
certain active hierarchy has to be deactivated one by one before
starting a new one.

Components use a common shared memory space to read
its inputs and write its outputs. The upper level component
connects the output with the inputs of the modules it activates.
This way a low level component could be reused by another
high level components which could decide to connect the low
level components in a different way. All these inputs and
outputs define the system information flow, which basically



GARCÍA ET AL : ETHOLOGICAL INSPIRED ARCHITECTURE APPLIED TO ROBOCUP GOALIE DESIGN 3

consists of internal (component generated) or external (from
the environment) stimuli. All components output are then
interal stimuli, while their input can be either an internal or
external stimuli depending where it comes from.

Fig. 2. Goalkeeper modules

Figure 2 shows an example of hierarchy, the goalkeeper
behaviour schemata.

C. Controllers

As already explained in section II-A, a controller is a group
of schemata which perform subroutines of the same task. The
components are grouped to simplify the overall structure of the
architecture: it is an effective way to reduce the information
flow present in the system.

Information, as we explained in the previous section, con-
sists of external or system internal stimuli wich would cause
either activation or deactivation of a given component. The
main reason to have controllers and not individual ungroupped
components is not having to consider an input and output
information channel per component of the system at any given
time. Instead, information is brought to each controller, and
it will then be redirected to the concrete component which is
desgined to react to it.

Basically, a controller oversees the activation and deacti-
vation of its components redirectering the information flow it
receives and produces. Each controller is able to communicate
with other controllers coexisting in the system to which it is
directly connected the samw way isolated components do.

Besides the conceptual simplicity explained, there is no real
difference among a controller and a group of components.
We describe the controllers we use, its functionality ,and its
implementation in section III.

D. The architecture working

The presented architecture shows both deliberative and
reactive properties, so it is a hybrid architecture in the classic
definition. The set of all possible conections among compo-
nents and their organization in different levels, as shown for
example in figure 2, give the system its deliberative nature.

The architecture is reactive during the hierarchy activation
phase previously explained in II-B: the set of active compo-
nents will vary depending on the situation, with only those

useful for the current behaviour being active. We will give
two examples of its reactive nature in next section.

Please note that even if the hierarchy defined by active
schemata in a given situation is dynamic (varies depending on
the task at hand) - reactive behaviour - the available conections
among components and their organization in levels is fixed and
previously stablished - deliberative architecture -.

Fig. 3. JCVD defensive movement schema implemented on real Nao robot

III. IMPLEMENTATION

We are interested in testing our architecture in order to
prove its functionality. To do so we have chosen to model
a goalkeeper behaviour.

A. Components

The components are the ethological schemata which model
all the posible actions the goalkeeper needs. We have the
following components (with each component’s name being
pretty much self-explanatory about their functionality):
• Goalie: Represents all kind of high level behavioural

decisions which a goalkeepr would perform during a
match, either specific to its role (eg: pucnch out the ball),
or not (perception tasks).

• KeepGoal: Represents all kind of high level behavioural
decisions which are specific to a goalkeeper’s role.

• MarkBall: Tryes to keep the ball inside the robots visual
field.

• BallPerception: Looks for the ball in a given image.
• TrackBall: Moves the robots head so that the ball stays

in the center of its visual field.
• Go: Makes the robot walk.
• Return: Makes the robot walk to the center of its keep.
• Save: Performs a defensive move to try to stop the ball.
• JCVD: A wide-area but slow defensive move intended to

prevent a goal.
• ABPos: A fast but small-area defensive move intended to

prevent a goal.
• Shoot: Performs a kick to clear the ball.
• PunchOut: Punches out the ball.



4 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 2, MAY 2010

B. Controllers and NaoQi Layer

Task related components are grouped into controllers. The
controllers we have implemented, its main functionality, and
the components they include are:
• Goalkeeper Controller: Takes high level deci-

sions about what to do at any given time: look for the
ball, move or try to prevent a goal. Includes Goalie and
KeepGoal components.

• Scanner Controller: Moves the robot head in or-
der to look for the ball and gets and analises images from
the robots camera. Includes MarkBall, BallPerception and
TrackBall components.

• Walk Controller: Allows the tobot walk in different
directions. Includes Go and Return components.

• Save Controller: Performs defensive positions in-
tended to stop or clear the ball. Includes Save, JCVD,
ABPos, Shoot and PunchOut components.

Those controllers have been used, as already introduced in
section II-C, to reduce the system complexity. By grouping
components which take part in the same task we reduce the
amount of information channels to be considered at any given
time. For instance: BallPerception and TrackBall components
are meant to work with visual information (the first one will
look for the ball in any image obtained by the robot camera
while the second one will try to center it in the field of
view once it has been found). There is no reason then to use
two different information channels carrying the same visual
information, so we group them in a controller which we call
Scanner Controller which will receive this information
and then redirect it to the component which actually needs it.

To be able to control the robot, we will use the software
layer it provides, called NaoQi. NaoQi is a propetary SDK
which allows us to access robot sensors and actuators by
using the modules it provides. We can not consider that
NaoQi modules define a real controller since they implement
very different functions, from internal memory management
to servo motors control, and thus are not really task-related.
However, for simplicity reasons, we will represent all these
modules together grouped in what we call NaoQi Layer.
Also, the only conceptual difference between NaoQi modules
and the rest of our components is that components in the
NaoQi layers are platform specific, that is, they are part of
Nao robot’s software. The hierarchical relation between all
the controllers can be seen in figure 4.

C. Hierarchy

The whole static hierarchy, which consists of all imple-
mented components, can be seen in figure 2, and the con-
trollers which they are part of are shown in figure 4. This static
hierarchy represents the deliberative nature of the architecture.
The components are organized in levels, with those realted to
high level tasks occupying the top ones while other more being
in the lower levels. The lines connecting components represent
the hierarchical relation between them.

The hybrid nature of our architechture can be better ilus-
trated by two examples of generation of autonomous behaviour
for our RoboCup goalkeeper.

Fig. 4. Goalkeeper controllers

Example I. Let’s assume only scanning and basic saving
positions modules are available during a real match (deliber-
ative architecture). Given this situation, the goalkeeper would
just activate the TrackBall component (after activating the
needed ascendant schemata to reach it) - reactive architecture
- (see figure 2), thus activating KeepGoal and MarkBall on
its way down to it. It would also eventually try to stop
it if it comes too close to the keep by going down the
hierarchy activating KeepGoal, Save and finally ABPos (a static
defensive position)..

Example II. Let’s suppose all schemata are available during
the match. In this case, the goalie, once the ball has been
found, would perform side steps to position itself in front of
the ball, activating Keep goal and go schemata. It could even
clear the ball activating the punch-out component (which is
also connected to Keep goal) if the ball comes close enough.

We have two videos34 in our web that show these examples
working in a real Nao humanoid. Both videos show the whole
tree of components, with the active components displayed in
a ligther color. The Nao robot appears to the left of the media
player, performing each action enumerated in both scenarios,
while we can observe its internal architechture displayed
at the right side. The relation among components and the
dynamic hierarchy resulting from their synchronization are
also represented: some schemata are activated when required
by the situation while others no longer neccesary become
inactive.

D. Real world restrictions

When implementing our architecture in a real robot some
issues were raised. For instance, not all actions can be instantly
stopped (specially those related to movement) to start a new
one. This affects not only robots also humans: just imagine
you are running and suddenly decide to lay on the floor; you
better slow down and stop moving before trying to do so or

3http://robotica.unileon.es/mediawiki/videos/save.swf
4http://robotica.unileon.es/mediawiki/videos/movementAndSave.swf



GARCÍA ET AL : ETHOLOGICAL INSPIRED ARCHITECTURE APPLIED TO ROBOCUP GOALIE DESIGN 5

you will en up rolling on the floor. Applied to our component
based design, this means component deactivation will always
have a time cost. It is not possible to model this cost because
it depends on the current situation.

In most cases, deactivation times are so brief that can be
ignored, such is the case of decision related componente like
KeepGoal, Save, MarkBall or TrackBall (not much time is
neccesary to decide you are no longer interested in defending
your keep or tracking the ball). However, time cost for
movement related ones like Go, ABPos or JCVD (see figure
2) are not negligible, as shown by figure 5. Althought these
time costs may seem to high, imagine for a moment the time
it would take to a human to stop running, fall to the floor to
try to stop the ball and then get up and start running again.

This actions performs in a real robot on a real enviroment
offers this results which are not son long like their appears,
if we compare with a human (non professional athletes) it is
similar to a person getting up in a normal situation.

We need to perform some actions before fully deactivating
any of these components so that the robot is not left in an
unstable position and thus becomes suitable to fall. We could
consider that some sort of cooldown timer is set preventing
any new schema activation until the last deactivated schema
ensures the robot has reached a stable state. As a result, all
schemata have an asociated deactivation cost.

Fig. 5. Time cost for some schemata

Taking these times into account, some sort of high level
deliberative mechanism is neccesary for behaviour planning:
It is neccesary to evaluate the advantages (goal achived) and
drawbacks (in terms of time cost) to deactivate a schema in
order to activate a new one. Should I really stop running to
comb my hair if I am running to try to catch the bus?, should
I stop running to tie my shoes if I am, again, trying not to
lose the bus? The answer to first question is obviously “no”
since my goal is to get in time before the bus leaves, but it
would probably be “yes” to the second one, since it may not
be worth taking the risk of falling.

In the robotics world, and specifically in the Robocup
environment, we also have plenty of situation which illustrate
this kind of situations. For instance, imagine the robot is
moving sideways (see figure 6, (1)). When close enough to
the ball, the Goalkeeper Controller decides it should
stop and try to block it by using a fast defensive move (ABPos
or JCVD). The Go schema should be deactivated, which would

consume 1 second (see figure 5). As soon as go is inactive,
Save is activated, and then JCVD becomes active too (labeled
as (2) in figure 6). If the ball suddenly moves away from
the goalie (for whatever reason), it will have to stand up and
move again. JCVD schema would be deactivated, which would
consume 2 seconds (it takes some time to get up from the
floor). Then, Save schema would get inactive (barely instantly
since it is just a decision related schema) and finally go could
be reactivated (see (1) in the same figure). So basically, a
“move - stop - save - get up - move” sequence would take
more than 3 seconds to perform in reality (without taking into
account the time the save would take per-se), while theorically
those times were neglected.

It is important then to evaluate advantages and disadvan-
tages of a decision (in terms of schemata deactivation times)
before putting it to practice. This was one of our flaws in the
last Robocup competition held in June 2009 at Graz, where
our controllers didn’t have a deliberative mechanism to evalute
these costs. For instance, there was a match in which we were
scored a goal after our goalkeeper decided to deactivate the
defensive JCVD component to get up and move in order to
better position itself between the ball and the net; it took it too
much time to get up, move and go back to its JCVD defensive
position, leaving space between itself and the keep post while
moving, which the rival team used to score a goal.

We are currently working into adding such functionality to
one of the components of our Goalkeeper Controller.

IV. ARCHITECTURE ANALYSIS AND VALIDATION

For the Standard Platform League, with the Naos being
a relatively new addition, the level of play of many teams
is not yet that sophisticated. Our goalkeeper was not called
upon to save many goals and so it is difficult to assess its
effectiveness relaying just on the results obtained during the
championship. It is also difficulty to assess how well would
the robot perform without this architecture in place since it
is the only one fully tested during our research. Keeping this
limitations in mind, we are trying to evaluate the architecture
the most objective way possible from three different points of
view: quality, development, and performance.

To evaluate these criteria we review all points presented
in the “4+1 View Model of Architecture” by Krutchen [26],
using the norm ISO 9126, an international standar for software
quality evaluation:

1) Logic level. High level programming allowed by
schemata and behaviour units usage and low level details
being hidden thanks to NaoQi both improve abstraction.
The architecture makes it easier to understand already
developed behaviours and actions and simplyfies the
process of adding new ones, so it complies with “us-
ability” characteristic of ISO 9126. Although it doesnt
directly guarantees efficiency, it makes it easier to achive
it since every module can be tested and improved its
own.

2) Processes level. The goalkeeper behaviour is splited
in different levels, with every level performing actions
independently form the rest (movement, vision, etc.).



6 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 2, MAY 2010

Fig. 6. Schemata active during a “move (1) - save (2) - move (1)” sequence

This makes concurrency much easier and at the same
time it simplyfies the process of adding a new beahviour
(for instance, a new kick o new scan mode) or even
a whole new controller (for instance, a localization
controller) without interfering with the already existing
ones. ISO 9126 “Security”, “interoperatbility”, and “sta-
bility” cathegories are then maximized when using this
architecture.

3) Development level. To evaluate development advan-
tages, that is, how this architechture makes the pro-
gramming of the Nao easier or how behaviours are
more quickly developed when using it, we use cocomo
(COnstructive COst MOdel), a mathematical empiri-
cal model for software costs stimation [27]. ¿Poner
tabla sin más con y sin arquitectura?.¿Quitar lode co-
como?¿calcularlo?

4) Hardware. The most interesting aspect of our architec-
ture about hardware is that all paltform specific calls and
functions are contained inside NaoQi layer. Since this
layer is developed and maitained by the Nao’s company
(Aldebaran), hardware optimized usage is taken outside
of the architecture and solely relies on their external
development. The existance of the NaoQi layer also
means that we could use this very same implementation
except for that layer for any other robot, which complies
with the “potability” cathegory of ISO 9126.

5) Performance of the four previous levels when work-
ing together. The best way to evaluate performance
of architecture as a whole is put it to the test. For
that reason, in section IV-A a battery of goalkeeper
specific tests is proposed. The matches played during
Hannover German Oppen and Graz Robocup are also a
good benchmark themselves and the result obtained are
reviewed in section aún por determinar.

hay que enlazar lo anterior con las pruebas más claramente
entiendo que “lo anterior” se refiere al artı́culo en general.
De ser ası́, creo que lo mejor es añadir un parrafo diciendo
que pretenden medir concretamente las pruebas y por qué.
Creo que queda mejor ponerlo en el apartado de pruebas, el
siguiente

A. Goalkeeper behaviour specific tests

The architecture described intends to model a goalkeeper
behaviour. The best way to test its elements, that is, hybrid
control based on reactive and deliberative actions, is to check
how well does a robot with an implementation of it perform
the goalkeeper rol. The most relevant tasks fulfilled by a goal-
keeper are then put to the test: fast movement over the field,
ball perception, ball tracking, proper positioning (deliberative
part), and goal saving (reactive part). Since movement speed,
and movement in general, is dependant on NaoQi primitives,
as it was previously stated in section III-B, this particular
characteristic is not taken into account. In order to test the
rest of them, the following benchmark is proposed:

Only one side of the field is used. A set of markers are
placed on it: they are placed at 4 rows and 5 columns, first
row at 50 cm from the keep line and the rest 50 cm from
the previous one. The markers are labeled as (m, n), with m
(rows) ranging from 0 to 3 and n (columns) from 0 to 4, with
marker (0, 0) being the one at the top-left corner when looking
at the keep and marker (0, 2) being positioned exactly in front
of the robot, at 50 cm from the keep’s line. All markers in the
same row are also positioned 50 cm from the adjacent ones.
Fig. 7 shows a top view of the benchmark proposed.

A 130 cm length ramp with variable inclination from 6%
to 24% is used to perform the test. The ball can be placed on
three different positions on top of it, at 50, 100 and 130 cm
from its lower part, which is placed on every marker in the
field. For every marker, the angle to the keep can be modified
from −π

4 rad to π
4 rad with steps of π

16 rad, which results in
nine possible orientation for every marker: −π

4 rad, − 5π
16 rad,

−π
8 rad, − π

16 rad, 0 rad, π
16 rad, π

8 rad, 5π
16 rad, and π

4 rad. This
allows us to test nine different orientations and three different
ball starting position for every marker; since twenty markers
are placed in the field, it means the benchmark includes a
total of 540 different shots. Shot speed can also be modified
depending on the ramp’s inclination. To perform the test, the
goalkeeper stands in the middle of the keep when started.
The ramp is then positioned at every marker (different ball
positions on top of it, and different angles and inclination are
used for all of them). Once the goalkeeper locates the ball and



GARCÍA ET AL : ETHOLOGICAL INSPIRED ARCHITECTURE APPLIED TO ROBOCUP GOALIE DESIGN 7

Fig. 7. Markers used for testing

starts tracking it, the ball is realeased from its initial position
and thus approaches the keep. For every shot, the goalkeeper
sucess rate in every category evaluated (ball perception, ball
tracking, proper positioning, and goal saving) is measured.

Fig. 8. Possible orientations from marker (0, 2)

To reduce the amount of measures to be taken, only markers
(0, n) from first row were used to test the architecture. Ramp
inclination was also fixed at 6%. All nine possible angles
and the three starting ball positions on top of the ramp were
used. This means 135 different shots were used to test our

behaviour. Every shot was repeated ten times to ensure more
reliable results, which gives us a total of 1350 measures.
Fig. 8 shows the different trajectories possible from marker
(0, 2) and Table I shows the sucess rates (in %) obtained for
every characteristic measured and every test performed. Ball
perception and tracking is almost flawless, and positioning
is also good, specially for central and side markers, that is,
(0, 0), (0, 2), and (0, 4). Positioning being not very accurate
for markers (0, 1) and (0, 3) (see Fig. 7) is a consequence
of far post shots from these positions: the goalkeeper tries to
always position itself in front of the ball, which is better to
intercept shots aimed at the near post but worse for far post
shots, which mostly end up in a goal.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have presented a hierarchical architecture,
borrowing concepts such as components (schemata) or dy-
namic hierarchies from ethology and adding others like the
controller concept to simplify the architecture design and the
information flow inside the system.

This architecture has been implemented on the software
infrastructure offered by the NaoQi development environment
for the Nao humanoid. We have shown two videos of this robot
operating with our ethological architecture. The videos are
intended to help understanding the hybridness of our approach,
showing both the hierarcical structure of all available connec-
tions among components (deliberative part) and its dynamical
variation with the activation and deactivation of components
to create different hierarchies depending on external stimuli
(reactive part).

The implementation has been evaluated using the “4+1 View
Model of Architecture” by Krutchen [26], and it has been
proved to comply with norm ISO 9126. To further validate its
performance in real gameplay environemnt, a benchmark of
goalkeeper specific behaviours has been proposed. The archi-
tecture was also tested druing RoboCup German Open (April
2009) and RoboCup Official tournament (July 2009). The
results obtained in both the benchmark and the competitions
show the correctness of the approach:
• The architecture mantains a goalkeeper behaviour for the

whole test or match (20 minutes for the former and 10
minutes for the later, both without human intervention).

• The architecture adapts to dynamic match situations,
mainly ball position.

• The architecture implements the goalkeeper behaviour
using a deliberative structure for planification (self-
positioning) and a reactive control mechanism to respond
to environmental and internal stimuli (goal saving).

• The architecture allowed the robot to track the ball nearly
100% of the time, position itself properly 84% of the
time, and save goals from 62% of the trajectories tested.

Future works envisioned are to include in the architecture
deliberative mechanisms to evaluate advantanges and draw-
backs of deactivating a component (in terms of time cost)
depending on the situation, improving reactive nature of the
system via gaze control implementation to react to other ele-
ments apart from the ball, and testing architecture’s suitability



8 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 2, MAY 2010

marker ball perception ball tracking proper positioning goal saved
(0,0) 100% 100% 100% 78%
(0,1) 100% 97% 61% 50%
(0,2) 100% 99% 98% 58%
(0,3) 100% 97% 63% 54%
(0,4) 100% 100% 100% 72%

TABLE I
GOALKEEPER’S BEHAVIOUR TEST RESULTS

to more complex behaviours that include collaboration with
other robots. Minor improvements in goalkeeper positioning
behaviour to make it less vulnerable to far post shooting would
also be interesting given the results obtained in the tests.

ACKNOWLEDGMENT

We want to express our gratitude and acknowledgment to
all members of our team, in particular to the members of the
robotics group of the Rey Juan Carlos university for their
support, help, and inspiration of the ideas described in this
paper.

The authors would also like to thank the Spanish Ministry
of Innovation for its support to this project under the grant
DPI2007-66556-C03-01(COCOGROM project).

REFERENCES

[1] Arkin, R.C., Balch, T.: AuRA: Principles and Practice in Review. Journal
of Experimental and Theoretical Artificial Intelligence, 9(2-3) (1997)
175–188

[2] Arkin, R.C.: Motor Schema-Based Mobile Robot Navigation. The Inter-
national Journal of Robotics Research, 8(4) (1989) 92–112

[3] Chernova, S., Arkin, R., 2007. From deliberative to routine behaviours:
a cognitively-inspired action selection mechanism for routine behaviour
capture. Adaptive Behaviour Journal, Vol. 15, No. 2, pages 199-216, 2007.

[4] Duchon, A. P., Harren, W. H., Kaelbling, L. P. Ecological robotics.
Adaptive Behaviour 6 (3/4), 473-507, special Issue on Biologically
Inspired Models of Spatial Navigation, 1998.

[5] Firby, R. J., Task networks for controlling continuous processes. In:
Proceedings of the 2nd International Conference on AI Planning Systems
AIPS?94. Chicago, IL (USA), pp. 49-54. 1994.

[6] Michael P. Georgeff and Amy L. Lansky, Reactive Reasoning and Plan-
ning”,Proceedings of AAAI-87 Sixth National Conference on Artificial
Intelligence, pp. 677-68, Seattle, WA (USA), 1987.

[7] , Barbara Hayes-Roth, Opportunistic control of action in intelligent
agents, IEEE Transactions on Systems, Man, and Cybernetics, Vol 23:6,
pp. 1575-1586, 1992.

[8] , Ken Currie and Austin Tate,O-Plan: The Open Planning Architecture”,
”Artificial Intelligence”, Vol. 52:1, pp. 49-86, 1991.

[9] José Marı́a Cañas y Vicente Matellán. From Bio-inspired vs. Psycho-
inspired to Etho-inspired robots. Robotics and Autonomous Systems.
Vol.55, Num. 12, pp. 841-850. DOI:10.1016/j.robot.2007.07.010

[10] J.M.Cañas, J. Ruı́z-Ayúcar, C. Agüero, F. Martı́n. JDE-neoc: component
oriented software architecture for robotics. . Journal of Physical Agents,
Volume 1, Number 1, pp 1-6, 2007.

[11] Juan F. Garcı́a, Francisco J. Rodrı́guez, Camino Fernández, and Vicente
Matellán. Designing a minimal reactive goalie for the RoboCup SPL.
WAF 2009 (Workshop de Agentes Fı́sicos) Cáceres (Spain).

[12] Pilar Bachiller, Pablo Bustos and Luis J. Manso. Attentional Selection
for Action in Mobile Robots. I-Tech, pp. 472, October 2008.

[13] Allen Newell Allen, J.C. Shaw, Simon, Herbert A. Simon. Report on
a general problem-solving program. Proceedings of the International
Conference on Information Processing. pp. 256-264, 1959.

[14] Lorenz, Konrad, Foundations of ethology. Springer Verlag, New York,
1981.

[15] D. McFarland, T. Bösser, Intelligent Behaviour in Animals and Robots.
MIT Press, ISBN: 0-262-13293-1, 1993.

[16] Toby Tyrrell, An evaluation of Maes’ bottom-up mechanism for be-
haviour selection. Journal of Adaptive Behaviour, Vol. 2, Num 4, pp.
307-348, 1994.

[17] Walter, Grey. An imitation of life. Scienti?c American, 1950.
[18] Reid Simmons, R. Goodwin, K. Haigh, S. Koenig, Joseph O’Sullivan,

and Maria Manuela Veloso, Xavier: Experience with a Layered Robot
Architecture, Agents ’97, 1997.

[19] Alexander Stoytchev and Ronald C. Arkin, Combining Deliberation,
Reactivity, and Motivation in the Context of a Behaviour-Based Robot
Architecture. In Proceedings 2001 IEEE International Symposium on
Computational Intelligence in Robotics and Automation. 290-295. Banff,
Alberta, Canada. 2000.

[20] Ronald C. Arkin. Motor Schema Based Mobile Robot Navigation. The
International Journal of Robotics Research, Vol. 8, No. 4, 92-112 (1989).

[21] Saffiotti, Alessandro and Wasik, Zbigniew, Using hierarchical fuzzy
behaviours in the RoboCup domain. Autonomous robotic systems: soft
computing and hard computing methodologies and applications. pp. 235-
262. Physica-Verlag GmbH. Heidelberg, Germany, 2003.

[22] Scott Lenser and James Bruce and Manuela Veloso, A Modular Hierar-
chical Behaviour-Based Architecture, Lecture Notes in Computer Science.
RoboCup 2001: Robot Soccer World Cup V. pp. 79-99. Springer Berlin
/ Heidelberg, 2002.

[23] T. Rofer and H. Burkhard and O. von Stryk and U. Schwiegelshohn and
T. Laue and M. Weber and M. Juengel and D. Gohring and J. Hoffmann,
B. Altmeyer and T. Krause and M. Spranger and R. Brunn and M. Dassler
and M. Kunz and T. Oberlies and M. Risler and M. Hebbela and W.
Nistico and S. Czarnetzkia and T. Kerkhof and M. Meyer and C. Rohde
and B. Schmitz and M. Wachter and T. Wegner and C. Zarges. German
team: Robocup 2005. Technical report, Germany, 2005.

[24] Antonio Gómez Skarmeta, y Humberto Martı́nez Barberá, Fuzzy Logic
Based Intelligent Agents for Reactive Navigation in Autonomous Systems,
Fitth International Conference on Fuzzy Theory and Technology, Raleigh
(USA), 1997

[25] M. Loetzsch, M. Risler, and M. Jungel. XABSL - A pragmatic approach
to behaviour engineering. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2006), pages 5124-
5129, Beijing, October 2006.

[26] Philippe Kruchten, Architectural Blueprints The “4+1” View Model of
Software Architecture, IEEE Software 12 (6), pages 42-50, November
1995.

[27] Barry W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.
[28] N. Nilsson, Teleo-Reactive Programs for Agent Control, Journal of

Artificial Intelligence Research, pages 139-158, 1994.


