
MYRABot+: A Feasible robotic system for
interaction challenges

Francisco Martı́n Rico
Technical School of Telecommunication Engineering

Rey Juan Carlos University
Fuenlabrada, Madrid (Spain)
Email: francisco.rico@urjc.es

Francisco J. Rodrı́guez Lera, Vicente Matellán Olivera
School of Industrial and Computer Engineering

University of León
León (Spain)

Email: {francisco.lera, vicente.matellan}@unileon.es

Abstract—This paper describes the development of a low cost
robotic platform named MYRABot+, which is able to make
the required tasks in order to assist a human in a domestic
environment. We also believe that the best way to measure
its performance and validate its behavior is taking part in a
robotic challenge. This robotic platform explicitly uses low cost
components, making it an accessible platform in monetary terms.
In addition, we have designed a component-oriented software
architecture that allows an easy implementation of simple HRI
tasks. We demonstrate the feasibility of this proposal by taking
part in the competition RoCKIn@home. There we show the basic
abilities needed to work in a house environment, such as self-
localization, navigation, human dialog, and object manipulation.
Our goal is to be able to evaluate and to compare it with other
robotic platforms.

I. INTRODUCTION

Competition is a well known catalyst for innovation. It has
been used in the robotic field for a long time, for instance,
AAAI competitions [21] are decades old. Lately, competitions
are gaining even more attention within the robotics research
community.

Another positive aspect of competitions is its attractive-
ness for general audiences. This point has particularly well
exploited by The RoboCup Federation that organizes the
RoboCup competition since 1997.

Since then, they have been organizing challenges in differ-
ent categories and performing Academic Conferences. They
are not only focused on robotic soccer, but organize com-
petitions in other domains: @work competition, a sponsored
category with the aim of developing new solutions for in-
dustrial environments; @home RoboCupRescue league and
RoboCup Junior league or @home competition focused on
the development of new solutions in assistance and personal
robotics.

Many other competitions are organized every year, locally,
regionally or globally. Some examples are DARPA challenge,
World Robot Olympiad, Robofest, AAAI Grand Challenge,
FIRST competition or RoCKIn Challenge.

On this paper we will focus on RoCKIn, which is a
robotic event organized by a consortium funded mainly by
an EU project. This event is made up by robot competitions,
forums, educational camps and workshops. The main target
of this challenge is not only the competition, but to define
a test-bed able to measure robots capabilities in two well

defined environments: RoCKIn@home for service robotics and
RoCKIn@work for industrial robotics.

Most robots that enter in this kind of competitions are state
of the art platforms with expensive sensors and actuators, as,
for instance, REEM robot made by PAL; Amigo robot from
Tech United, or Care-o-Bot from Fraunhofer IPA.

However, we think that economic cost has to be taken into
account. In this way, we have built a low-cost robotic platform.
The current version of our robot is named MYRABot+ (figure
1). It is based on Turtlebot platform, but we have improved its
hardware for @home competitions. We also have developed a
software architecture for platform control based on ROS.

During the last decade, many other affordable robotic
platforms have been built. Some recent affordable examples
are, for instance, πrobot [17], Maxwell robot developed by
Michael Ferguson, software engineer from Willow Garage, or
the EL-E: An Assistive Robot from George Tech Healthcare
Robotics Lab [16]. All these platforms have been designed for
HRI. All of them includes a positionable arm, stereo camera
mounted on top of the robot and anthropomorphic appearance.

MYRABot+ has been built on top of the Turtlebot. Turtle-
bot is one of the most successful affordable platforms [15]. It
was initially designed at Willow Garage lab and developed by
Tully Foote and Melonee Wise in 2011.

Major contributions of MYRABot+ when compared with
other platforms as previously mentioned,there are four: first,
the perception system that is based on MS-Kinect which
reduces the cost from some thousand euros to less than 150.
Second one is possibility of including a low cost arm. Third,
the use of ROS (Robotic Operative System) that simplified the
way that the technical people develop solutions for robots,
and fourth, the frame oriented chassis that let us improve
the human-robot interaction capabilities, because the original
Turtlebot robot is not an appropriated solution for HRI as we
saw in previous experiences [18].

Another major contribution of this research is a component-
oriented architecture. It can be implemented on several open
source frameworks, such as ROS [9] by Willow Garage,
RoboComp [10] by Universidad de Extremadura, CARMEN
[11] by Carnegie Mellon, and Miro [12] by University of Ulm.
All of them use some component-based approach to organize
robotic software using ICE, IPC, and CORBA, respectively, to
communicate their modules.

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

978-1-4799-4254-1/14/$31.00 ©2014 IEEE 273

Fig. 1. MYRABot+ Robot Models (real and Rviz)

To sum up, the aim of the research described in this paper
is to evaluate if it is feasible to create a low cost platform that
could be able to join international competitions. In particular,
we have chosen RoCKIn, in its @home flavor, to test it.

The rest of the paper is organized as follows: section II
discusses MYRABot+ platform. Section III summarized the
software architecture used in the platform. Section IV presents
the experiments made and last section V discuss all the
research, first results and future work.

II. MYRABOT+

The robot presented in this research is the result of the
evolution of our first MYRABot solution, a platform for
basic elderly assistance. The main motivation guiding the
design of our platform was to provide a low-cost tele-presence
platform capable of providing augmented reality for pills dose
management. We wanted to develop an available platform for
less than 1500 euros (less than 2k euros with and arm) in order
to be affordable for elderly homes. The figure 1 identifies the
main components of the architecture.

The component labelled as 1 is the webcam camera at-
tached on top of the platform. It is used for simple HRI tasks
and object perception for grasping tasks. The component 2
is the display, we decided to use the netbook screen located
in the bottom of the robot structure and numbered as 7 in
the figure. This computer manages all the robot behaviors.
The component named 3 is the robot arm, used for simple
manipulation and robot grasping. The component labelled 4 is
a kinect RGB-D camera used for navigation tasks. It gets the
power from Roomba base (component 6) that is the famous
iRobot Roomba vacuum cleaner. Finally the element number 5
has the start/stop button and also the emergency button, which
is a must to take part in a robotic competition.

A. Arm

Regarding the arm (figure 2 a)) we designed a solution
meeting three conditions: low cost, low weight and able to be
powered by Roomba base.

From the hardware point of view, the robotic arm was
built using Bioloid, the educational kit. It is controlled by an
Arduino Mega 2560 board, and is fed by Roomba battery after
a small modification in the base.

From the software point of view, we initially developed an
embedded solution but in order to make the integration with the
system easier, we finally developed a ROS module in charge
of controlling it.

Fig. 2. a) Arm + Arduino Mega 2560 b) Control Board (PC-Roomba)

B. Frame

During our research we have built different prototypes for
robot frame, all of them made in wood. We used a 5 mm
laminated wood to make the frame. This is not a common
material used to make a robot, but it is one of the cheapest
way to do it.

The major problem was that the frame suffers small shak-
iness during navigation, and we solved it decreasing linear an
angular velocities and adding an extra castor wheel.

C. Base

As a mobile platform we have a roomba vacuum cleaner
robot. Similarities with iCreate (from iRobot too) let us use
ROS and turtlebot packages.

The communication interface used in this platform between
the robot and the laptop, is a custom designed board developed
by the team supported in the classical serial port features. It
is presented in figure 2 b).

The base supplies the power for the two components, the
kinect and the arm. We made a modification in the interface
to power the kinect (12V). We get it from 5 pin connector on
top of the base. The power for the arm is got from vacuum
motor.

D. Simulator

In order to be able to test all our developments prior to
be deployed on the platform, we have developed an initial
model of our platform for the Gazebo simulator. The figure 3
presents the model. We also developed a model for the rviz,
the 3D visualization tool available in ROS, it is depicted in
the right part of figure 1.

III. COMPONENT ORIENTED SOFTWARE ARCHITECTURE

We use a component architecture to generate robot behav-
iors. This architecture has been implemented in a single ROS
node to take advantage of its benefits, but providing interesting
features as presented below.

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

274

Fig. 3. MYRABot+ model for Gazebo simulator

Figure 4 describes the implementation scheme of a robotic
application using our software architecture. There can be mul-
tiple ROS nodes containing components of our architecture,
which communicates with other ROS regular nodes to take
advantage of existing ROS software. Besides ROS and ICE
communications can be used to interconnect any component
to other processes or even debugging graphics applications.

A

B C

10 Hz

20 Hz 20 Hz

D

E F

10 Hz

20 Hz 20 Hz

ROS node
A

ROS node
B

ROS node
C

ROS Topic

External application
or

Computation process

Fig. 4. Distributed scheme of our software architecture. We use both ROS and
ICE communications to interoperate with regular ROS nodes, those which also
implements our architecture, and another processes as GUIs and computation
units.

The behaviors that the robot carried out are implemented
using a component-based scheme. Each behavior can be
decomposed into simpler functional units that are executed
iteratively at different rate. Figure 5 shows the basic behavior
of looking for a cup. The overall behavior is formed by
the iterative execution of three components. One component
analyzes the image looking for a cup. Another component
controls robot’s motors. A third component modulates motor
component using the perceptive information.

The software schemes sumbsumption paradigm, the behav-
ior of a robot is implemented as the interaction of various soft-
ware components running at once. This can be implemented

Go to Cup

CupDetector

C

10 Hz

20 Hz 20 Hz

0 50 100 150 200 250

B A C B C B A C B C B A C

A

B
Motors

Fig. 5. Relation among components, and the Gantt diagram of the execution.

step()

modulations information
output

Component A
N Hz

Fig. 6. A component with its interface.

as the concurrent execution of several ROS nodes that publish
the results of its implementation on topics, which are used by
others.

The basic building block in our architecture is the compo-
nent (figure 6), that represents the basic unit of functionality.
The main idea is building component that it does only one
thing, but efficiently.

A component is composed by three main parts:

• Modulations: The modulation methods set operation
modes or set up the next component iterations.

• Execution: All the components inherit from the vir-
tual class component, which defines the manda-
tory methods to be implemented. The most important
method is step(). This method performs an iteration
of this component. This is the entry point for a
component-explicit execution.

• Output: The results method is used to get the infor-
mation produced in the last iteration.

Components run in the same process, using a single thread.
This eliminates race conditions and has benefits for component
synchronization. Sharing the same memory address space also
gives certain advantages from the point of view of imple-
mentation, such as being able to use design patterns (such
as singleton) or reduce the time spent on the interconnection
of components. Instead of operations between ROS nodes,
there are direct calls to local procedures. ROS provides a good
mechanism to avoid race conditions, in our architecture most of
these problems are solved using a single thread implementation
of all components.

If a component requires information from another compo-
nent, it explicitly calls its step() function before collecting
the data. If a component modulates the execution of another
component, it first modulates, and then it calls its step()

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

275

method. The function istime2run() evaluates to true if
the time elapsed since last execution is longer than 1

f , where
f is the frequency. Depending on this, step() method carries
out its work, or not . Below is a basic example of a typical
implementation of a component A that uses the information
from B to modulate C.

//Two components used by A
B A::b;
C A::c;

A::A()
{

b = B::GetInstance();
c = C::GetInstance();

}

A::step()
{

b->step();

if(isTime2Run())
{

int info = b->getInfo();
c->setInfo(info);

}

c->step();
}

Components can be very simple or very complex. Sim-
ple components communicate with the underlaying system
methods to communicate with sensors or motors, or use a
fixed number of components. Complex components can be
implemented as finite state machine, changing the set of
components it activates dynamically depending of the state.
We have developed a useful tool for designing these complex
components. This tool generates the code of the graphically
represented behavior. An example of this tool can be seen in
figure 7.

Fig. 7. Visual tool for developing behaviors as finite state machine inside a
component. Blue circles are other component dependencies, yellow circles are
states (the red circle is the initial state), and red arcs are the transitions between
states. This tool generates the complete implementation of a component.

An interesting aspect of our approach is the use of re-
sources. When a component uses another, explicitly calls his
step() method. In this way, components that are not being
used by any other component, does not run, saving computing
power. There are not explicit activations or deactivations, or

situations where components are running, but its result is not
being used.

IV. EXPERIMENTS

Our architecture intensively uses the ROS resources. As
described in the previous section, we have used the simulator
Gazebo and rviz visualization tool. In addition, ROS provides
all drivers to access the hardware of the robot, presenting
it in a compact and easily way as topics. PCL and Bullet
libraries allow to handle complex structures such as RGB
point clouds in 3D and have operations such as reference axes
changes. We tested the full system in two environments: a
test bed environment restricted to our lab and the RoCKIn
challenge. All the tests performed in our lab started using the
Gazebo simulator and our models. The tests related with the
RoCKIn carry many steps, disassembling/assembling of the
platform, software integration during camp and work with the
system under stress or restricted conditions related with the
competition environment as for instance use a special network.

A. Software architecture experiments

The software architecture that we used has been success-
fully tested in other applications such as robot soccer [19]
or application of robot in Alzheimer therapies with humanoid
robots [20]. This experience has not only demonstrated the
validity of our approach in varied and dynamic environments,
it has produced lots of tools for developing and debugging
behavior.

In addition to this successful experience, there are more
reasons to use this architecture. We could have implemented
each component in a different ROS node running a certain
frequency, and using ROS communications. Previously we
have stated that it would not be appropriate to run nodes with
components that are not used. Our approach does not.

A
15 Hz

10 ms

B
20 Hz

5 ms

C
10 Hz

5 ms

D
15 Hz

15 ms

E
10 Hz

10 ms

F
4 Hz

5 ms

Fig. 8. Experiment set up. A behavior is composed by the execution of
several component, running at different rate and with a medium computation
time.

Another important feature in our approach is, by design,
that the time between a data is produced and used is reduced. A
component that uses data from another component requires the
freshest information possible. To demonstrate this feature, we
designed an experiment and we measured the time from a data
occurs until used. In figure 8 we show a behavior composed by
six components. Component C uses the information produced
in the execution of component A and B; component E uses
the information from D; and component F uses information
from C and E. We have implemented this scheme both in ROS

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

276

(each component in a different node) and our architecture, and
we have measured the time elapsed since the result of each
component is produced until it is used. Figure 9 shows the
results of this experiment. The age of the data consumed by
components C, F and E in the ROS implementation is bigger
than in our approach. This is specially critical in components
that needs real time conditions.

Input data Freshness

Time (secs)

D
at

a
fr

es
hn

es
s

(s
ec

s)

ROS C
ROS E
ROS F

Our Approach C
Our Approach E
Our Approach F

Fig. 9. The elapsed time since a data is produced and it is consumed.

B. RoCKIn Camp 2014

We participated in the first RoCKIn camp 2014 in Rome
Fig.rockincamp. The organization has divided the challenge
in two phases, the first oriented to robot set-up and team
collaboration. The second is the challenge itself against other
teams.

This first camp was not the real competition phase, it
was presented as the initial set up phase. The schedule was
separated in two sessions: training in the morning and hands
on in the afternoon.

We were able to identify some problems in our platform.
We also deployed new solutions to apply in our solution during
this camp.

The software problems identified during the camp were:
the platform was working with the old ROS Fuerte distribution
and some of the solutions given in the camp for grasping or
perception were not prepared for our platform, so we decided
to upgrade our version to ROS hydro. We migrated everything
in two days and we were ready to integrate some of the camp
solutions.

Fig. 10. MoveIt! integration

The improvements done during these days were: a) the
integration of our model with the MoveIt! solution (figure10)
provided by RoCKIn organization. b) A new component to
our system to manage the object recognition with depth
cameras. The problem related with this new component was the
computational cost. This task has to be done off-board because
the computational cost needed is too high for the computer (a
netbook PC) mounted on-board. Everything can be seen in the
web 1 of our project.

We also find two problems were related with hardware. The
first one was related with the robot morphology, we were not
able to deploy some perception solutions for grasping because
our 3D camera is situated in a lower position and only for
navigation tasks. In this way we decided to put an extra Xtion
Camera on top of the robot as is shown in right picture of
figure 11.

The last problem was related with power supply, we burn
our battery and were not able to feed kinect or arm without
wires. The reason is that we carry our first prototype to the
camp, and it was extensively used for labs experiments.

Fig. 11. RoCKIn Camp: a) Team demo b) Improved robot perception with
a RGB-D camera on top of the platform

V. CONCLUSION

We have made a low cost robotic platform for @home
competitions. We built a first prototype for RoCKIn@home
challenge that was tested in the first Rome camp (left picture
of figure 11).

The robot works under ROS environment but also a high
level control architecture using cognitive features was de-
veloped. We have implemented a component oriented soft-
ware architecture which uses all the resources of ROS, but
implemented in a single ROS node. This behavior-oriented
architecture is thread safe. The scheduler does not create
multiple threads to execute components. Only one thread calls
sequentially to the scheduler list of components. This thread
executes in cascade the components, in the order defined
depending on the relation of the components (modulation or
results), as we presented in figure 5.

If any of the components sporadically spends more time
than that desired, the systems suffers from what in real-time
literature is called ”graceful degradation”. The execution of the
other components is delayed, but no executions are canceled
or overlapped. In the development phase of the components,

1http://robotica.unileon.es/mediawiki/index.php/RoCKIn2014

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

277

offender components are detected because istime2Run()
methods of each component periodically test if the frequency is
achieved, generating a warning if not. The set of of components
that a component can activate varies dynamically. As there is
no explicit deactivation method, its step function is simply not
called anymore, we have to design the component having in
mind that a component does not know when it is going to be
called again. This is called ”quiet shutdown”. The information
produced by a component can be used by several components.

This is very common in components that extract informa-
tion from the sensors, and which is used by several com-
ponents. It is especially critical in complex sensors such as
images, in which the processing time is not negligible. In our
architecture, these perceptual components are set to the fre-
quency at which the information is completely valid between
executions. Thus, separate components requiring the same
sensory information does not require additional executions of
perceptual components.

We found a some problems during the fist robot camp
but related with hardware, to be precise with the prototype
power, not with the software or architecture. All software was
tested before, during and after de camp and new solutions
were developed during these days and can be seen in the
project page. We also migrated all the platform to hydro ROS
environment.

As a future development we have two well define devel-
opment lines. In one hand we want to solve the hardware
issues: the one founded with the power supply, as we have
developed all the platform supported in the Roomba battery,
an improvement should to be done. The second, is to prepare
the platform for the integration of a depth camera, in this way
again the power supply needs to be taking into account. By
the other hand we want to perform stress tests to know the
robot limits.

ACKNOWLEDGMENT

This work was partially supported by University of León
and Cátedra-Telefónica.

REFERENCES

[1] K. Konolige, K. Myers, E. Ruspini, A. Saffiotti, The Saphira architecture:
A design for autonomy, Journal of experimental & theoretical artificial
intelligence 9 (2-3), 215-235. 1998.

[2] K. Konolige, Saphira robot control architecture, Technical Report, SRI
International, Menlo Park, Calif, USA, 2002.

[3] R. A Brooks, Intelligence Without Representation, Artificial Intelligence
47 (1991) 139-159.

[4] A. Brooks, T. Kaupp, A. Makarenko, A. Orebck, S. Williams, Towards
Component-Based Robotics, IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2005) p. 163–168. 2005.

[5] A. Makarenko, A. Brooks, T. Kaupp, On the Benefits of Making Robotic
Software Frameworks Thin, IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2007). Workshop on Evaluation of
Middleware and Architectures. 2007.

[6] B. Gerkey, R. T. Vaughan, A. Howard, The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems, In Proceedings of
the 11th International Conference on Advanced Robotics (ICAR 2003),
pages 317-323, Coimbra, Portugal, June 2003.

[7] H .J. Collett, B. A. MacDonald, B. Gerkey, Player 2.0: Toward a
Practical Robot Programming Framework, In Proceedings of the Aus-
tralasian Conference on Robotics and Automation (ACRA 2005), Sydney,
Australia, December 2005.

[8] R. T. Vaughan, Massively multi-robot simulations in Stage, Swarm
Intelligence, 2(2-4):189-208, 2008.

[9] M. Quigley, C. Ken, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
Y. Andrew, ROS: an open-source Robot Operating System. Proc. of the
IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open
Source Robotics, 2009.

[10] R. Cintas, L. J. Manso, L. Pinero, P. Bachiller, P. Bustos, Robust
Behavior and Perception using Hierarchical State Machines: A Pallet
Manipulation Experiment. Proceedings, Journal of Physical Agents, ISSN
1888-0258. Vol. 5, No. 1, pp 35-44. March 2011.

[11] M. Montemerlo, N. Roy, S. Thrun, Perspectives on standardization in
mobile robot programming: the Carnegie Mellon Navigation (CARMEN)
Toolkit. IROS 2003: 2436-2441. 2003.

[12] G. K. Kraetzschmar, H. Utz, S. Sablatng, S. Enderle, and G. Palm, Miro
- Middleware for Cooperative Robotics. Proceedings of RoboCup-2001
Symposium, volume 2377 of Lecture Notes in Artificial Intelligence,
pages 411-416, Berlin, Heidelberg, Germany, 2002. Springer-Verlag.

[13] M. Henning, The Rise and Fall of CORBA, ACM Queue Magazine (Vol
4, Issue 5, June 2006).

[14] J.M. Cañas, V. Matellán, From bioinspired vs psychoinspired to ethoin-
spired robots. Robotics and Autonomous Systems, Volume 55, pp 841-
850, 2007.

[15] Gerkey, B.; Conley, K., Robot Developer Kits [ROS Topics], Robotics
& Automation Magazine, IEEE , vol.18, no.3, pp.16,16, Sept. 2011 doi:
10.1109/MRA.2011.942483

[16] Chih-Hung King, Marc D. Killpack, and Charles C. Kemp,Effects of
Force Feedback and Arm Compliance on Teleoperation for a Hygiene
Task , Eurohaptics, 2010

[17] Patrick Goebel, The Chronicle of Pi Robot, Dynamixel using ROS,
Robotis, Available online:http://www.robotis.com/xe/158765

[18] Francisco J. Lera, Vı́ctor Rodrguez, Carlos Rodrı́guez and Vicente
Matellán, Augmented Reality in Robotic Assistance for the Elderly,
In International Technology Robotics Applications. ISBN: 978-3-319-
02331-1, 2013

[19] F. Martı́n, C. Aguero, J. M. Cañas, E. Perdices, Humanoid Soccer
Player Design. Robot Soccer. Ed: Vladan Papic, pp 67-100. IN-TECH,
2010.

[20] F. Martı́n, C. Aguero, J. M. Cañas, P. Martı́nez, M. Valenti, RoboTher-
apy with Alzheimer Patients, International Journal of Advanced Robotic
Systems: Humanoid. Vol. 9, pp 1-7. 2012.

[21] R. Bonasso, T. Dean, A Retrospective of the AAAI Robot Competitions,
AI Magazine, 18(1), 11-23. 1997.

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

278

