
Communications and basic coordination of robots in TeamChaos

Carlos E. Agüero, Francisco Mart́ın Humberto Mart́ınez Barberá
Vicente Matellán

Grupo de Robótica (GSyC) Dept. Ing. Información y las Comunicaciones

Universidad Rey Juan Carlos Universidad de Murcia

Móstoles (Madrid), España Murcia, España

{caguero,fmartin,vmo}@gsyc.escet.urjc.es humberto@um.es

Abstract

How to coordinate a set of robots is still an
open issue. It is a problem made up by several
sub-problems. One of them is how to share
information among the members of a team
without compromising the basic requirements
of the application. In this paper we show the
communication architecture we have designed
to let a team of robots communicate. We
present an application of this architecture to
implement a simple ball booking protocol to
share the information about the ball among
the robotic team members in the 4-legged
RoboCup. This protocol let us to define
strategies for optimizing our tactic during a
match.

1 Introduction

The problem of creating a robotic soccer team
is a very complex problem. There are several
research areas involved (low level locomotion,
perception, location, behavior development,
communications, etc.). Each team has to solve
all the issues in order to build a complete team.

In particular, we are part of the
TeamChaos1 that participates in the 4-legged
RoboCup[?].

The code is splitted into two main projects:
TeamChaos and ChaosManager. TeamChaos
contains all code that runs in the robots.
ChaosManager (figure 1) is a suite of tools

1http://www.aass.oru.se/Agora/RoboCup/

for calibrating, debugging, and monitorizing
different aspects of the robots and the game.

Figure 1: ChaosManager suite is used to help
in calibration, debug and monitorization the

TeamChaos code

Communications are an important issue in
TeamChaos architecture. They let us use
external tools for making laborious tasks more
easily. For instance, they let us receive images
and data from the robot to debug its behavior,
to refine the camera parameters, to reconfigure
the robot camera while the robot is running
or to teleoperate the robot to check kicks
or locomotion using communication between
robots and ChaosManager too.

Besides being used as support for these
tools, communication among robots are
needed for sharing information among them
and playing better. In particular, ball position
and local belief about self location are sent
periodically to the rest of team mates.



Once this communication architecture is
available, it can also be used to coordinate
the players during a match. In [?] a potential
field approximation was developed to solve
this problem. In this work, they used dynamic
roles assignment to decide the influence areas
of each robot. In [?], a behavior architecture
were able to determine, in a coordinated way,
the next action to be taken by each robot.
Carnegie Mellon team also uses potential fields
in its work [?] combined with a global and
shared map. Other option is the work [?],
that uses utility concept to choose the most
appropriate role for each robot.

During RoboCup 2005, we implemented a
Basic Ball Booking Protocol B3P to resolve
the problem of two or more robots detect the
ball and try to control it. This protocol uses a
coordinated mechanism to guarantee that only
one, and just one robot goes to the ball and
controls it.

In section 2 our Team-Chaos software
architecture is presented. The communication
mechanism is analyzed in section 3. Section 4
describes the simple ball booking mechanism
design and implementation. The experiments
to validate this mechanism are presented in
section 5. Finally conclusions are discussed in
the last section.

2 TeamChaos software architecture

TeamChaos architecture is represented in
Figure 2.The lower layer commander provides
an abstract interface to the sensor-motoric
functionalities of the robot. The middle
layer maintains a consistent representation
of the space around the robot (PAM or
“Perceptual Anchoring Module”). It is
composed by a set of tactical behaviors (HBM
or “Hierarchical Behavior Module”). The
higher layer maintains a global map of the
field (the GM, or “Global Map”), and makes
the strategic decisions based on the current
situation using an HFSM (Hierarchical Finite
State Machine). Finally, radio communication
is used to exchange position and coordination
information with other robots via the TCM,
or “Team Communication Module”.

Commander

Perceptual
Anchoring

Module

Hierarchical
Behaviour 

Module

Global
Map

Hierarchical
Finite

State Machine

Team
Communication

Module

CONTROL IMPLENTATION

Sensor
Data

Motor
Commands

Local State

Local State
Global State

Behaviours

Messages

Other
Robot

Other
Robot

COMMUNICATION IMPLENTATION

Figure 2: Overview of the TeamChaos architecture

The code running in each robot is organized
in Open-R2 objects. Each object is
mono-thread. Architecture shown figure 2 is
divided into three different Open-R objects:
ORRobot, ORTcm and ORGCtrl.

ORRobot is the main object and his goals
are getting local perceptions from its sensors,
getting located inside the field, and generating
motion commands according to a collection of
behaviors.

ORTcm is the communication manager and
must fulfill tasks for sending and receiving
data.

ORGCtrl is an object entrusted to manage
all instructions sent by the GameController,
which is an electronic referee during the
match.

Next section describes the ORTcm, which is
the relevant module for the implementation of
B3P . Details about this architecture can be
found in [?].

3 Team-Chaos communication
architecture

ORTcm is an Open-R object which controls
the radio communications between an AIBO
robot and any external entities (other AIBO

2http://openr.aibo.com/



robots, remote computers, etc). It is a
“communication center” that is used by
modules when they want to communicate with
other ones located in other robot.

The communication protocol developed is
stateless, so there are not any connection
establishment process, neither for termination.
Also, transmissions are not reliable. Due
to real time needs, communication protocol
does not use any ACK’s or retransmissions.
It is better to lost some information than
retransmits several times and receive old
information.

OPEN-R offers both TCP/IP and UDP
support but we have chosen the UDP
alternative for make lighter and real time
communications. At this moment, TCM
opens four UDP sockets, three of them
for ChaosManager communications, and the
other one for communications among robots.

An ExternalMessage data structure has
been developed as the exchange unit between
entities. As we can see in figure 3 it has a set of
fields describing the data source and destiny,
both the source entity (AIBO or computer),
the TeamChaos module that has sent it, data
length, data transfered in the message, etc.

Figure 3: External message package with its
relevant fields

Each robot has an unique IP and it
is associated to his robot identifier in file
TCM.ini. When someone sends a message to
the identifier of a robot, the consequence will
be an unicast message towards the IP joined
to this identifier. We also allow broadcast
transmissions. This feature is useful for
sending debug information that is analyzed
and showed by our external debugging tools
(ChaosManager) and for sharing information
among the members of the team.

A class called UDPConn has been created
for implementing the TCM. This class
provides an abstraction layer over the
OPEN-R IP stack, showing to the developer
an easy interface for using typical socket calls.
Also, a TcmClient class has been developed

for hiding all details of the communication
inter-object mechanism typical in OPEN-R.

One interesting detail of the Team
Communication module is the capacity
of sending any kind of data. TCM forces
the module, that wants to send/receive an
specific data type, to offer its own functions
to serialize and unserialize data. Maintaining
this constraint, TCM solves the rest of the
communication tasks.

The communication module also establishes
a callback mechanism that allows a module to
register with an specific data type. When this
data type arrives to the robot, the callback
function previously registered is invoked.

Figure 4: Communication diagram between

modules and Tcm

TCM also resolves the problem of
sending/receiving messages bigger than a
UDP datagram. It cuts into pieces larger
messages and it composes again at destination.
This is useful for sending big configuration
files or images that do not fit into a single
UDP datagram.

Finally, a class called TcmClient has been
developed with the goal of hiding OPEN-R
implementation details to modules that want
to communicate with the ORTcm object.
As we can see in figure 4, TcmClient acts
as a proxy storing all messages from the
modules. It delivers messages to ORTcm when
communication module is ready to attend a
new request. So, TcmClient works regulating
the flux of messages between modules and



TCM simplifying the communication process
to them.

4 Ball booking protocol

Once the communication architecture had
been implemented, we focused in solving the
problem of coordinating the robots that try to
control the ball. The problem arises when two
or more robots detect the ball. Every robot
wants to control it. If two or more robot reach
the ball position at same time, the ball control
was ineffective, making impossible to play in
the right way.

B3P basically consists in maintaining a
local booking state about the ball. The
ball can be requested by a robot, which
announces this booking to other robots using
the communication mechanism previously
described.

Other robots update this information, and
locally decides if they can book the ball or not.
A robot decides its next action depending on
this local information about the ball booking
state.

This mechanism must accomplish the next
requirements:

1. If a robot is nearer from the ball than
the one which has booked the ball, the
booking state must change and the nearer
robot must book the ball and try to
control it.

2. It is not permitted that no robot tries
to control the ball.The mechanism must
quickly recover from situations in which
the robot which has booked the ball crash
or is penalized.

3. Robots at same distance from ball should
not be alternatively booking the ball. In
order to solve it some distance thresholds
has been used.

4. Only one robot, and just one of the robot
which has detected the ball, must obtain
the ball control. The other robots must
go to optimal positions in the field, but
they never should try to obtain the ball

control while one of its mates has the ball
booked.

The robot maintains local information
about the ball booking state. This information
is maintained as four different variables:

• Booked ball. Becomes true when any
robot has booked the ball.

• Robot booker. It contains the robot

Id which has booked the ball.

• Distance. Distance to the ball from the
robot which has booked the ball.

• Timestamp. Local timestamp when the
robot has booked (or re-booked) the ball.

Figure 5: Basic Ball booking protocol

In Figure 5, the booking mechanism is
shown. When a robot knows the ball position,
it always tries to book it. The process is the
next:

• The robot checks if any robot has
previously booked the ball. If the ball has



not been already booked, it books the ball
and informs of this decision to its team
mates.

• If the ball is currently booked by another
mate, the robot checks the local booking
timestamp.

• If the robot which has the ball booked has
not renewed the book recently, the ball is
supposed to be free and able to be booked
by another robot.

• If the ball is booked and this book is
renewed periodically, the robot checks if
its own position with respect the ball is
better than the currently booker robot
one. If its position is better, it books
the ball and informs of this decision to
its mates.

• When all these conditions have been
tested and the robot has not booked the
ball, the robot must do anything, excepts
trying to control the ball.

5 Experiments

As with most complete systems designed
to perform a task, it is difficult to produce
quantitative results. Before using this
booking method in a real match, we tested
the system extensively in our laboratory.
These tests can be downloaded from
http://gsyc.es/robotics/sbbp.mpg. In
this video, only a robot at same time goes to
the ball, and the others perform another task.
In this case and for clarity, they remain still.

Figures 6-10 show an example of this
protocol in action. In figure 6, robot 1 and
robot 3 have successfully localized the ball.
They must decide which of them has to go to
the ball. In figure 7, robot 1 has booked the
ball and goes to the ball. The other robots
have detected the ball, but their main task
is remaining still while they have not booked
the ball. In figure 8, the ball is pushed by an
external agent. Then, robot 1 loses the ball
(figure 9), and robot 2, which has previously
detected the ball but was not moving, books
the ball and goes for it (figure 10).

Figure 6: The ball is seen by robot 1 and 3. One of

them must go to the ball and they start the book
process

Figure 7: Only the robots 1 books the ball and
goes to it. Robots 2 and 3 remain still

The tests done to validate this protocol
show how the robots share the ball information
for booking the ball in the right way. When
a robot, which has booked the ball, goes to
the ball and it is switched off, instantaneously
another robot books the ball and starts
moving to the ball. All the requisites
presented in Section 4 are satisfied.

In the First Spanish RoboCup 4-Legged
Open3(FSR4LO) we tested the Simple Ball
Booking Protocol. The robot agglomeration
around the ball was greatly reduced and the
robots covered the field in a more efficiently
way. Due to the fact that the three teams
that entered the competition this year are part

3http://www.rvg.ua.es/SpanishOpen05/



Figure 8: The ball is lost by robot 1 due to an

external action

Figure 9: Robots 2 and 3 detect the robot 1 has

lost the ball and book the ball. Robot 3 books the
ball and goes to the ball

of the TeamChaos, the code was basically the
same. The major difference among them was
the use of B3P in the URJC team. This
team won the competition and did not lose any
match. In the next table we the scores in the
open are showed. First column corresponds
to the team which used B3P and the second
column corresponds to the other teams which
did not use B3P .

6 Conclusions and Further Work

The use of communication among robots
greatly enhances the players performance
during a match.

In this paper we have shown the

Figure 10: Robot 3 controls the ball

B3P Non B3P

1st match 2 0

2nd match 2 0

3th match 1 0

Table 1: Results of First Spanish 4-Legged
Open

communication architecture developed in
TeamChaos 4-legged team. Using this
architecture, we have designed and developed
a Basic Ball Booking Protocol, called B3P ,
that allows sharing responsibilities among
robots, without give up their functionality
and without producing negative effects in
adverse situations during the match.

Also, we have analyzed the results obtained,
showing that this protocol really works
and the team performance enhancement is
improved.

Next actions are focused on developing
algorithms that calculate the optimal robot
positions in the field when they do not book
the ball. These improvements will let us to
design a team strategy which will be useful in
next competitions.

7 Acknowledgement

The authors would like to thank other
members of TeamChaos and Robotics Lab,
specially Antonio Pineda and Vı́ctor Hidalgo
for their useful help in this work.



This research has been partially
sponsored by grants No. S-0505/DPI/0176
by Community of Madrid and
No. DPI2004-07993-C03-01,
DPI2004-07993-C03-02 by Spanish Ministry
of Education corresponding to RoboCity and
Acrace projects respectively.

References

[1] Humberto Mart́ınez Barberá,
Vicente Matellán Olivera, Miguel Ángel
Cazorla Quevedo, Francisco Mart́ın Rico,
Carlos Agúero Durán, Vı́ctor Manuel
Gómez, Gómez, and David Herrero-Perez.
Team chaos 2005 - team report. Technical
report, TeamChaos 4-legged team, 2005.

[2] Brian Gerkey and Maja Mataric. On
role allocation in robocup. In RoboCup
2003: Robot Soccer World Cup VII, 2004.
Springer-Verlag, 2004.

[3] H. Kitano, M. Asada, Y. Kuniyoshi,
I. Noda, and E. Osawa. Robocup:
The robot world cup initiative. In
ICJAI-95 - Workshop on Entertainment
and AI/ALIFE, 1995.

[4] Scott Lenser, James Bruce, and
Manuela Veloso. A modular hierarchical
behavior-based architecture. In A. Birk,
S. Coradeschi, and S. Tadokoro, editors,

RoboCup-2001: The Fifth RoboCup
Competitions and Conferences. Springer
Verlag, Berlin, 2002.

[5] Noriaki Mitsunaga, Taku Izumi, and
Minoru Asada. Cooperative behavior
based on a subjective map with shared
information in a dynamic environment.
International Conference on Intelligent
Robots and Systems, pages 291–296, 2003.

[6] R. Smith and P. Cheeseman. On the
representation and estimation of spatial
uncertainty, 1986.

[7] Ashley Stroupe, Martin C. Martin,
and Tucker Balch. Distributed sensor
fusion for object position estimation
by multi-robot systems. In IEEE
International Conference on Robotics and
Automation, May, 2001. IEEE, May 2001.

[8] Douglas Vail and Manuela Veloso.
Dynamic multi-robot coordination. In
Multi-Robot Systems. Kluwer, 2003.

[9] J. Vallejos, P. amd Ruiz-del-Solar and
A. Duvost. Cooperative strategy using
dynamic role assignment and potential
fields path planning. In 1st IEEE
Latin American Robotics Symposium,
LARS2004. Mexico City. México, 2004.


