Difference between revisions of "Ruben-RV-ROS01"

From robotica.unileon.es
Jump to: navigation, search
(Stop and resume actual navigation in ROS navigation stack)
m
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
* '''Project name:''' Turtlebot robot indoor navigation
 
* '''Project name:''' Turtlebot robot indoor navigation
 
 
* '''Dates:''' July 2013 -  
 
* '''Dates:''' July 2013 -  
 
 
* '''Degree:''' Summer Research Residence
 
* '''Degree:''' Summer Research Residence
 
+
* '''Authors:''' Rubén Rodríguez Fernández
* '''Authors:''' Ruben
+
* '''Contact:''' runix404@gmail.com, rrodrf04@estudiantes.unileon.es
 
 
* '''Contact:''' runix404@gmail.com
 
 
 
* '''SVN Repositories:'''
 
 
 
 
* '''Tags:''' ROS, navigation, turtlebot
 
* '''Tags:''' ROS, navigation, turtlebot
 
 
* '''Technologies:''' kinect, pcl, openni, c++, cmake, ROS
 
* '''Technologies:''' kinect, pcl, openni, c++, cmake, ROS
 +
* '''Status:''' Ongoing
  
* '''State:''' Ongoing
 
 
----
 
  
 +
=ROS Fuerte Installation on Ubuntu 12.04=
  
==ROS Fuerte Installation on Ubuntu 12.04==
+
==Repository configuration==
===Repository configuration===
 
  
 
First we need to add the repository
 
First we need to add the repository
Line 29: Line 19:
 
<syntaxhighlight lang=Bash>wget http://packages.ros.org/ros.key -O - | sudo apt-key add -</syntaxhighlight>
 
<syntaxhighlight lang=Bash>wget http://packages.ros.org/ros.key -O - | sudo apt-key add -</syntaxhighlight>
  
===Installation===
+
==Installation==
 +
 
 
We need to refresh the cache of your package manager
 
We need to refresh the cache of your package manager
 
<syntaxhighlight lang=Bash>sudo apt-get update</syntaxhighlight>
 
<syntaxhighlight lang=Bash>sudo apt-get update</syntaxhighlight>
Line 37: Line 28:
 
<syntaxhighlight lang=Bash>sudo apt-get install ros-fuerte-desktop-full</syntaxhighlight>
 
<syntaxhighlight lang=Bash>sudo apt-get install ros-fuerte-desktop-full</syntaxhighlight>
  
 
+
==Enviroment Configuration==
===Enviroment Configuration===
 
  
 
Now we need to configure the enviroment variables
 
Now we need to configure the enviroment variables
Line 48: Line 38:
 
<syntaxhighlight lang=Bash> . ~/.bashrc </syntaxhighlight>
 
<syntaxhighlight lang=Bash> . ~/.bashrc </syntaxhighlight>
  
==Turtlebot installation==
+
=Turtlebot installation=
 +
 
 
The turtlebot installation is very simple, you only have to type in your terminal
 
The turtlebot installation is very simple, you only have to type in your terminal
 
  
 
<syntaxhighlight lang=Bash> sudo apt-get install ros-fuerte-turtlebot* </syntaxhighlight>
 
<syntaxhighlight lang=Bash> sudo apt-get install ros-fuerte-turtlebot* </syntaxhighlight>
  
==Navigation==
+
=Navigation=
  
=== Feasible Solutions ===
+
==Feasible Solutions==
  
 
The feasible solutions are Dynamic Window and Potencial Field :
 
The feasible solutions are Dynamic Window and Potencial Field :
Line 66: Line 56:
 
and the goal has a attraction fiel
 
and the goal has a attraction fiel
  
=== Dynamic window algorithm ===
+
==Dynamic window algorithm==
 
 
  
 
1.- Calculate the desired velocities ( angular and linear ).  
 
1.- Calculate the desired velocities ( angular and linear ).  
Line 73: Line 62:
 
2.- Select the allowable velocities ( angular and linear ) , this is compute the dynamic window, after this step we have a
 
2.- Select the allowable velocities ( angular and linear ) , this is compute the dynamic window, after this step we have a
 
allowable velocities range ( [ min linear, max linear ], [ min angular, max angular ])
 
allowable velocities range ( [ min linear, max linear ], [ min angular, max angular ])
 
  
 
3.- For each tuple [ v, w ] determine the closest obstacle
 
3.- For each tuple [ v, w ] determine the closest obstacle
Line 107: Line 95:
 
     END
 
     END
  
=== Experiments ===
+
==Experiments==
  
 
In these experiments, the robot will try to reach the position (3,3) from the origin.  
 
In these experiments, the robot will try to reach the position (3,3) from the origin.  
Line 122: Line 110:
 
A realistic scenario
 
A realistic scenario
  
==Path Planning==
+
=Path Planning=
  
=== Voronoi ===
+
==Voronoi==
  
 
ongoing
 
ongoing
  
=== Graph SLAM ===
+
==Graph SLAM==
  
 
ongoing
 
ongoing
  
 +
=Convert sensor_msgs/Range to sensor_msgs/LaserScan message=
 +
 +
To be able to use Ultrasonic data in Laserscan we need to convert the sensor_msgs/Range message to sensor_msgs/Laserscan. The messages
 +
has two fields in common and the other fields can be calculated using tfs and the other data contained in the Range message.
 +
 +
The proccess is simple, in our case we need to convert 5 Ranges that are besides into a Laserscan message. So, the first part is to link the 5 messages and after convert into a Laserscan message. For achieve that, we use a cache and store the messages and when we have the 5 ranges create the Laserscan message, the proccess of caching the messages is simple too but we need to take care because the messages mightn't be sequencial.
  
==Convert sensor_msgs/Range to sensor_msgs/LaserScan message==
+
Create laserscan message process
  
 +
Caching process
  
==Stop and resume actual navigation in ROS navigation stack==
+
<syntaxhighlight lang=c++>
 +
ROS_DEBUG("Cache message");
 +
    boost::mutex::scoped_lock lock(cache_mutex);
 +
bool justCached = false;
 +
int maxMessage = 0;
 +
for (unsigned int i = 0; i < this->subscribers.size(); i++) {
 +
if (cache[0][i] == 0) {
 +
maxMessage = i;
 +
break;
 +
}
 +
ROS_DEBUG("cache %s with number %d ", message.header.frame_id.c_str(), i);
 +
if (cache[0][i]->header.frame_id.
 +
compare(message.header.frame_id) == 0) {
 +
justCached = true;
 +
break;
 +
}
 +
}
 +
 +
if (!justCached) {
 +
sensor_msgs::LaserScan * copy = new sensor_msgs::LaserScan;
 +
copy-> header = message.header;
 +
copy-> angle_min = message.angle_min;
 +
copy-> angle_max = message.angle_max;
 +
copy-> angle_increment = message.angle_increment;
 +
copy-> time_increment = message.time_increment;
 +
copy-> scan_time = message.scan_time;
 +
copy-> range_min = message.range_min;
 +
copy-> range_max = message.range_max;
 +
copy-> ranges = message.ranges;
 +
copy-> intensities = message.intensities;
 +
 +
cache[0][maxMessage] = copy;
 +
 +
if (maxMessage == this->subscribers.size() - 1) {
 +
this->proccessTrigger();
 +
for (unsigned int i = 0; i < this->subscribers.size(); i++) {
 +
delete cache[0][i];
 +
cache[0][i] = 0;
 +
}
 +
sensor_msgs::LaserScan ** temp = cache[1];
 +
cache[1] = cache[0];
 +
cache[0] = temp;
 +
}
 +
} else {
 +
maxMessage = 0;
 +
justCached = false;
 +
sensor_msgs::LaserScan * copy = new sensor_msgs::LaserScan;
 +
copy-> header = message.header;
 +
copy-> angle_min = message.angle_min;
 +
copy-> angle_max = message.angle_max;
 +
copy-> angle_increment = message.angle_increment;
 +
copy-> time_increment = message.time_increment;
 +
copy-> scan_time = message.scan_time;
 +
copy-> range_min = message.range_min;
 +
copy-> range_max = message.range_max;
 +
copy-> ranges = message.ranges;
 +
copy-> intensities = message.intensities;
 +
 +
for (unsigned int i = 0; i < this->subscribers.size(); i++) {
 +
if (cache[1][i] == 0) {
 +
maxMessage = i;
 +
break;
 +
}
 +
if (cache[1][i]->header.frame_id.
 +
compare(message.header.frame_id) == 0) {
 +
cache[1][i] = copy;
 +
justCached = true;
 +
}
 +
}
 +
if (!justCached) {
 +
cache[1][maxMessage] = copy;
 +
}
 +
}
 +
</syntaxhighlight>
 +
 
 +
Finally we need to link the messages and publish the laserscan message
 +
 
 +
 
 +
<syntaxhighlight lang=c++>
 +
void UltrasonicFakeLaserscan::createMessageFromRanges(sensor_msgs::
 +
  LaserScan ** lc,
 +
  int size) {
 +
ROS_DEBUG("Create new message with stamp %d ",sequence);
 +
float minAngle = lc[0]->angle_min;
 +
float maxAngle = lc[0]->angle_max;
 +
float minRange = lc[0]->range_min;
 +
float maxRange = lc[0]->range_max;
 +
int indexMin = 0;
 +
long nanoseconds = 0;
 +
long seconds = 0;
 +
int pointsSize = 0;
 +
for (int i = 0; i < size; i++) {
 +
if (minAngle > lc[i]->angle_min) {
 +
indexMin = i;
 +
minAngle = lc[i]->angle_min;
 +
}
 +
 
 +
if (maxAngle < lc[i]->angle_max) {
 +
maxAngle = lc[i]->angle_max;
 +
}
 +
 
 +
if (minRange > lc[i]->range_min) {
 +
minRange = lc[i]->range_min;
 +
}
 +
 
 +
if (maxRange < lc[i]->range_max) {
 +
maxRange = lc[i]->range_max;
 +
}
 +
 
 +
nanoseconds = nanoseconds + lc[i]->header.stamp.nsec;
 +
seconds = seconds + lc[i]->header.stamp.sec;
 +
pointsSize = pointsSize + lc[i]->ranges.size();
 +
}
 +
 
 +
 +
nanoseconds = nanoseconds / size;
 +
seconds = seconds / size;
 +
 
 +
sensor_msgs::LaserScan scan;
 +
//Create laserscan message
 +
scan.header.seq = sequence++;
 +
scan.header.stamp = ros::Time(seconds, nanoseconds);
 +
scan.header.frame_id = UltrasonicFakeLaserscan::CAMERA_LINK;
 +
scan.angle_min = minAngle;
 +
scan.angle_max = maxAngle;
 +
scan.angle_increment = (fabs(scan.angle_max - scan.angle_min)) / pointsSize ;
 +
scan.time_increment = 0;
 +
scan.range_min = minRange;
 +
scan.range_max = maxRange;
 +
scan.ranges.resize(pointsSize);
 +
 +
//Copy the first message
 +
float actualMaxAngle = lc[indexMin]->angle_max;;
 +
int count = 0;
 +
for (unsigned int i = 0; i < lc[indexMin]->ranges.size(); i++) {
 +
scan.ranges[count++] = lc[indexMin]->ranges[i];
 +
}
 +
 
 +
if (indexMin != 0) {
 +
sensor_msgs::LaserScan * temp = lc[indexMin];
 +
lc[indexMin] = lc[0];
 +
lc[0] = temp;
 +
}
 +
 +
for(int i = 1; i < size; i++) {
 +
int index = i;
 +
double min = lc[i]->angle_min;
 +
for(int j = i; j < size; j++) {
 +
if(min > lc[j]->angle_min) {
 +
index = j;
 +
min = lc[j]->angle_min;
 +
}
 +
}
 +
if(index != i) {
 +
sensor_msgs::LaserScan * temp = lc[index];
 +
lc[index] = lc[i];
 +
lc[i] = temp;
 +
}
 +
 +
for (unsigned int index = 0;
 +
index < lc[i]->ranges.size(); index++) {
 +
scan.ranges[count++] = lc[i]->ranges[index];
 +
}
 +
}
 +
ROS_DEBUG("Sent");
 +
this->scan_pub.publish(scan);
 +
 
 +
</syntaxhighlight>
 +
 
 +
=Stop and resume actual navigation in ROS navigation stack=
  
 
The main goal of this chapter is stop and resume the actual navigation, this can be useful when the robot need to wait for example to a person.
 
The main goal of this chapter is stop and resume the actual navigation, this can be useful when the robot need to wait for example to a person.
Line 144: Line 308:
 
When you want to start the navigation stack, you must start the custom navigation stack that introduces this modifications, after you can change this value using the library libmb_sendskip.so that includes the class MB_robot::SendState that allows to change this parameter with the method sendState(bool state).
 
When you want to start the navigation stack, you must start the custom navigation stack that introduces this modifications, after you can change this value using the library libmb_sendskip.so that includes the class MB_robot::SendState that allows to change this parameter with the method sendState(bool state).
  
==Goals correction for navigation stack==
+
=Goals correction for navigation stack=
 +
 
 +
One of the problems with the robots is that normally they are smaller than a human, in some situations this isn't a problem, but if a human is follow the robot it can become in a problem. For example, the optimal path can go under a table or other object.
 +
 
 +
In ROS, the navigation stack uses costmaps to find valid paths, this costmap is 2D so we only need to modify the property of the maximun obstacle height and put a value higher than the height of the robot.
 +
 
 +
If you take a look at the [http://wiki.ros.org/costmap_2d Costmap2D doc] you can see an attribute called max_obstacle_height, the doc description about this parameter is the following :
 +
 
 +
''The maximum height in meters of a sensor reading considered valid. This is usually set to be slightly higher than the height of the robot. Setting this parameter to a value greater than the global max_obstacle_height parameter has no effect. Setting this parameter to a value less than the global max_obstacle_height will filter out points from this sensor above that height.''
 +
 
 +
So, if we put the value of a human we solve this problem.

Latest revision as of 18:33, 15 January 2015

  • Project name: Turtlebot robot indoor navigation
  • Dates: July 2013 -
  • Degree: Summer Research Residence
  • Authors: Rubén Rodríguez Fernández
  • Contact: runix404@gmail.com, rrodrf04@estudiantes.unileon.es
  • Tags: ROS, navigation, turtlebot
  • Technologies: kinect, pcl, openni, c++, cmake, ROS
  • Status: Ongoing


ROS Fuerte Installation on Ubuntu 12.04

Repository configuration

First we need to add the repository

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu precise main" > /etc/apt/sources.list.d/ros-latest.list'

and setup the keys

wget http://packages.ros.org/ros.key -O - | sudo apt-key add -

Installation

We need to refresh the cache of your package manager

sudo apt-get update

In our case, we decide to install ros-fuerte-desktop-full that is recommended in the ROS web, but you can also install other as explained on the web

sudo apt-get install ros-fuerte-desktop-full

Enviroment Configuration

Now we need to configure the enviroment variables

echo "source /opt/ros/fuerte/setup.bash" >> ~/.bashrc

For refresh the enviroment variables of your terminal you can reset it or type

 . ~/.bashrc

Turtlebot installation

The turtlebot installation is very simple, you only have to type in your terminal

 sudo apt-get install ros-fuerte-turtlebot*

Navigation

Feasible Solutions

The feasible solutions are Dynamic Window and Potencial Field :

1.-Dynamic Window : is a velocity-based local planner that calculates the optimal collision-free ('admissible') linear and angular velocity for a robot required to reach its goal

2.-Potential-field : In the pontetial-field navigation each obstacle has an obstacle 'force field' for repelling the robot, and the goal has a attraction fiel

Dynamic window algorithm

1.- Calculate the desired velocities ( angular and linear ).

2.- Select the allowable velocities ( angular and linear ) , this is compute the dynamic window, after this step we have a allowable velocities range ( [ min linear, max linear ], [ min angular, max angular ])

3.- For each tuple [ v, w ] determine the closest obstacle

4.- Determine if the distance to the closest obstacle is within the robots braking distance.

5.- Now, we can calculate the score of this tuple, the velocities that are more near to desired velocities will get a more score

6.- Now we select the velocity that has the most score

7.- If the score is higher than a minimun score return this tuple, else the linear and angular velocities will be 0

In pseudocode (source)

  BEGIN DWA(robotPose,robotGoal,robotModel)
  	desiredV = calculateV(robotPose,robotGoal)
  	laserscan = readScanner()
  	allowable_v = generateWindow(robotV, robotModel)
  	allowable_w  = generateWindow(robotW, robotModel)
  	for each v in allowable_v
  	   for each w in allowable_w
  	   dist = find_dist(v,w,laserscan,robotModel)
  	   breakDist = calculateBreakingDistance(v)
  	   if (dist > breakDist)  //can stop in time
  	      heading = hDiff(robotPose,goalPose, v,w)
  	      clearance = (dist-breakDist)/(dmax - breakDist)
  	      cost = costFunction(heading,clearance, abs(desired_v - v))
  	      if (cost > optimal)
  	         best_v = v
  	         best_w = w
  	         optimal = cost
  	 set robot trajectory to best_v, best_w
   END

Experiments

In these experiments, the robot will try to reach the position (3,3) from the origin.

1. Simple scenario Simple navigation

2. A wall scenario Navigation with obstacle

3. A realistic scenario

Path Planning

Voronoi

ongoing

Graph SLAM

ongoing

Convert sensor_msgs/Range to sensor_msgs/LaserScan message

To be able to use Ultrasonic data in Laserscan we need to convert the sensor_msgs/Range message to sensor_msgs/Laserscan. The messages has two fields in common and the other fields can be calculated using tfs and the other data contained in the Range message.

The proccess is simple, in our case we need to convert 5 Ranges that are besides into a Laserscan message. So, the first part is to link the 5 messages and after convert into a Laserscan message. For achieve that, we use a cache and store the messages and when we have the 5 ranges create the Laserscan message, the proccess of caching the messages is simple too but we need to take care because the messages mightn't be sequencial.

Create laserscan message process

Caching process

	ROS_DEBUG("Cache message");
		    boost::mutex::scoped_lock lock(cache_mutex);
			bool justCached = false;
			int maxMessage = 0;
			for (unsigned int i = 0; i < this->subscribers.size(); i++) {
				if (cache[0][i] == 0) {
					maxMessage = i;
					break;
				}
				ROS_DEBUG("cache %s with number %d ", message.header.frame_id.c_str(), i);
				if (cache[0][i]->header.frame_id.
					compare(message.header.frame_id) == 0) {
					justCached = true;
					break;
				}
			}
			
			if (!justCached) {
				sensor_msgs::LaserScan * copy = new sensor_msgs::LaserScan;
				copy-> header = message.header;
				copy-> angle_min = message.angle_min;
				copy-> angle_max = message.angle_max;
				copy-> angle_increment = message.angle_increment;
				copy-> time_increment = message.time_increment;
				copy-> scan_time = message.scan_time;
				copy-> range_min = message.range_min;
				copy-> range_max = message.range_max;
				copy-> ranges = message.ranges;
				copy-> intensities = message.intensities;
				
				cache[0][maxMessage] = copy;
				
				if (maxMessage == this->subscribers.size() - 1) {
					this->proccessTrigger();
					for (unsigned int i = 0; i < this->subscribers.size(); i++) {
						delete cache[0][i];
						cache[0][i] = 0;
					}
					sensor_msgs::LaserScan ** temp = cache[1];
					cache[1] = cache[0];
					cache[0] = temp;
				}
			} else {
				maxMessage = 0;
				justCached = false;
				sensor_msgs::LaserScan * copy = new sensor_msgs::LaserScan;
				copy-> header = message.header;
				copy-> angle_min = message.angle_min;
				copy-> angle_max = message.angle_max;
				copy-> angle_increment = message.angle_increment;
				copy-> time_increment = message.time_increment;
				copy-> scan_time = message.scan_time;
				copy-> range_min = message.range_min;
				copy-> range_max = message.range_max;
				copy-> ranges = message.ranges;
				copy-> intensities = message.intensities;
				
				for (unsigned int i = 0; i < this->subscribers.size(); i++) {
					if (cache[1][i] == 0) {
						maxMessage = i;
						break;
					}
					if (cache[1][i]->header.frame_id.
						compare(message.header.frame_id) == 0) {
						cache[1][i] = copy;
						justCached = true;
					}
				}
				if (!justCached) {
					cache[1][maxMessage] = copy;
				}
			}

Finally we need to link the messages and publish the laserscan message


void UltrasonicFakeLaserscan::createMessageFromRanges(sensor_msgs::
														  LaserScan ** lc,
														  int size) {
		ROS_DEBUG("Create new message with stamp %d ",sequence);
		float minAngle = lc[0]->angle_min;
		float maxAngle = lc[0]->angle_max;
		float minRange = lc[0]->range_min;
		float maxRange = lc[0]->range_max;
		int indexMin = 0;
		long nanoseconds = 0;
		long seconds = 0;
		int pointsSize = 0;
		for (int i = 0; i < size; i++) {
			if (minAngle > lc[i]->angle_min) {
				indexMin = i;
				minAngle = lc[i]->angle_min;
			}

			if (maxAngle < lc[i]->angle_max) {
				maxAngle = lc[i]->angle_max;
			}

			if (minRange > lc[i]->range_min) {
				minRange = lc[i]->range_min;
			}

			if (maxRange < lc[i]->range_max) {
				maxRange = lc[i]->range_max;
			}

			nanoseconds = nanoseconds + lc[i]->header.stamp.nsec;
			seconds = seconds + lc[i]->header.stamp.sec;
			pointsSize = pointsSize + lc[i]->ranges.size();
		}

		
		nanoseconds = nanoseconds / size;
		seconds = seconds / size;

		sensor_msgs::LaserScan scan;
		//Create laserscan message
		scan.header.seq = sequence++;
		scan.header.stamp = ros::Time(seconds, nanoseconds);
		scan.header.frame_id = UltrasonicFakeLaserscan::CAMERA_LINK;
		scan.angle_min = minAngle;
		scan.angle_max = maxAngle;
		scan.angle_increment = (fabs(scan.angle_max - scan.angle_min)) / pointsSize ;
		scan.time_increment = 0;
		scan.range_min = minRange;
		scan.range_max = maxRange;
		scan.ranges.resize(pointsSize);
		
		//Copy the first message
		float actualMaxAngle = lc[indexMin]->angle_max;;
		int count = 0;
		for (unsigned int i = 0; i < lc[indexMin]->ranges.size(); i++) {
			scan.ranges[count++] = lc[indexMin]->ranges[i];
		}

		if (indexMin != 0) {
			sensor_msgs::LaserScan * temp = lc[indexMin];
			lc[indexMin] = lc[0];
			lc[0] = temp;
		}
		
		for(int i = 1; i < size; i++) {
				int index = i;
				double min = lc[i]->angle_min;
				for(int j = i; j < size; j++) {
					if(min > lc[j]->angle_min) {
						index = j;
						min = lc[j]->angle_min;
					}
				}
				if(index != i) {
					sensor_msgs::LaserScan * temp = lc[index];
					lc[index] = lc[i];
					lc[i] = temp;
				}
				
				for (unsigned int index = 0;
					index < lc[i]->ranges.size(); index++) {	
					scan.ranges[count++] = lc[i]->ranges[index];
				}
		}
		ROS_DEBUG("Sent");
		this->scan_pub.publish(scan);

Stop and resume actual navigation in ROS navigation stack

The main goal of this chapter is stop and resume the actual navigation, this can be useful when the robot need to wait for example to a person.

For achieve that, we need to modify the move base package and introduce a few lines. This lines only check if the navigation is stopped and then don't sending the velocity command. And for modify the state of the navigation, we create a new topic to change this value.

When you want to start the navigation stack, you must start the custom navigation stack that introduces this modifications, after you can change this value using the library libmb_sendskip.so that includes the class MB_robot::SendState that allows to change this parameter with the method sendState(bool state).

Goals correction for navigation stack

One of the problems with the robots is that normally they are smaller than a human, in some situations this isn't a problem, but if a human is follow the robot it can become in a problem. For example, the optimal path can go under a table or other object.

In ROS, the navigation stack uses costmaps to find valid paths, this costmap is 2D so we only need to modify the property of the maximun obstacle height and put a value higher than the height of the robot.

If you take a look at the Costmap2D doc you can see an attribute called max_obstacle_height, the doc description about this parameter is the following :

The maximum height in meters of a sensor reading considered valid. This is usually set to be slightly higher than the height of the robot. Setting this parameter to a value greater than the global max_obstacle_height parameter has no effect. Setting this parameter to a value less than the global max_obstacle_height will filter out points from this sensor above that height.

So, if we put the value of a human we solve this problem.