Difference between revisions of "RoCKIn2014"
WikiSheriff (talk | contribs) (→Phase I: Initial Setup) |
WikiSheriff (talk | contribs) |
||
Line 79: | Line 79: | ||
[[RoCKIn2014PhaseI | Outline]]: Tasks developed in this phase | [[RoCKIn2014PhaseI | Outline]]: Tasks developed in this phase | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Phase II: Integration and Architecture === | === Phase II: Integration and Architecture === |
Revision as of 09:12, 21 October 2013
Contents
RoCKIn Camp 2014
- Project Name:
- Official Web Page
RoCKIn@home
- Project Codename
Watermelon :D
- Advisor:
Vicente Matellán Olivera
- Staff:
Technical software: Fernando Casado Technical software: Víctor Rodríguez Technical software: Francisco Lera Technical hardware: Carlos Rodríguez
- Other Information:
* Academic Year: 2013-2014 * SVN Repositories: soon ... * Tags: Augmented Reality, Elderly people, Tele-Assistence * Technology: ROS, PCL, c++, svn, OpenCV, cmake, OpenGL, Qt, Aruco, * State: Development
Project Summary
This challenge focuses on domestic service robots. The project aims robots with enhanced networking and cognitive abilities. They will be able to perform socially useful tasks such as supporting the impaired and the elderly (one of the main goal of our group).
In the initial stages of the competition individual robots will begin by overcoming basic individual tasks, such as navigation through the rooms of a house, manipulating objects or recognizing faces, and then coordinate to handle house-keeping tasks simultaneously, some of them in natural interaction with humans.
Robot
We want to take part in RoCKIn with the platform developed during the las two years in the Catedra Telefónica-ule.
Robot Hardware
- iRobot Roomba 520
- Dinamixel Arm (5x12a)
- wood frame (yes, it is made with wood)
- Notebook (Atom processor) (display+computer are separeted)
- Kinect
- Arduino Mega
Robot Software
- ROS (robot control)
- MYRA (C/C++, ArUCo, Qt, openCV)
Proposal
We want to deploy in this robot the minimal functional abilities to be part of RoCKIn 2014.
- Navigation
- Mapping
- Person recognition
- Person tracking
- Object recognition
- Object manipulation
- Speech recognition
- Gesture recognition
- Cognition
We are going to separate the development in three phases:
- Phase I: Initial Setup
- Phase II: Integration and architecture
- Phase III: Platform test
- Phase IV: Improvements and complex tasks
- Technical Challenge: Furniture-type Object perception
- Open Challenge: Present and demonstrate most important (scientific) achievements
Phase I: Initial Setup
Outline: Tasks developed in this phase
Phase II: Integration and Architecture
Non-Critical (but to-do)
- Android/iOS Teleoperation
- Desktop Qt interface
- Create robot model for Gazebo
- Create robot model for rviz (the same as Gazebo?)
Wishlist
- Computer i7 processor, 8GB RAM, Nvidia (1-2 GB)
- ASUS Xtion Pro Live Color RGB Sensor
- Roomba battery
- Arduino Mega (x2)
- Roomba base (520, 560)