RoCKInChallengeToulouse
Sponsors and Acknowledgments
First of all we would like to thank the Spanish Ministry of Economy and Competitiveness for the partial support to this work under grant DPI2013-40534-R.
We want to show our appreciation to these companies for their support to watermelon team:
RoCKIn Project Description
In the initial stages of the competition, individual robots will begin by overcoming basic individual tasks, such as navigating through the rooms of a house, manipulating objects or recognizing faces, and then coordinating to handle house-keeping tasks simultaneously, some of them under natural interaction with humans.
Watermelon Project: Team Description
- Project Codename
Watermelon Project
- Team Coordinator:
Vicente Matellán Olivera
- Team Members:
Technical- Manipulation/Grasping, Simulation: Fernando Casado Technical- SW Integration, Middleware, 2D Perception: Francisco Martín Rico Technical- SW Integration, HRI Dialogue, Team Leader: Francisco Lera Technical- Hardware: Carlos Rodríguez Technical- 3D Perception: Víctor Rodríguez
- Other Information:
Academic Year: 2014-2015 Repositories: https://github.com/Robotica-ule/MYRABot Tags: Robotics competitions, Feasible Assistive Robots Technology: ROS, PCL, c++, svn, OpenCV, cmake, OpenGL, Qt, Aruco, State: Development
Project Summary
Our challenge is to create a feasible platform able to take part in Robotics Competitions. We are working for integrating different hardware solutions in a DIY robot.
Robot
We want to take part in RoCKIn with the platform developed during the last two years in the Catedra Telefónica-ULE.
Robot Hardware
| Component | Model | Description |
| Frame | n/a | Poplar laminated wood |
| Computer 1 | Mountain Graphite 20 | web |
| Computer 2 | Mountain Prototype | Touch Display, 360º open, intel i5. |
| Controllers | (a)Arduino 2560, (b)USB2serial | (a)arm, range sensors, (b)create |
| Base | Create (iRobot) | web |
| Ultrasound Sensors | Maxsensor mb1220 (x5) | Range: 7 meters |
| RGB sensor | Logitech | Webcam |
| RGBD sensors | Kinect, Asus Xtion | |
| Battery | standard | 12V, 7A |
| Arm (Actuator) | Dinamixel AX12 servos (x5) | Joints and servomotors from Bioloid |
Robot Software
| Option | Control Software | Version | Description |
| Robot (Simulator available) | Gazebo and ROS | Gazebo 1.19, ROS - HYDRO |
Competition Benchmarks
It is possible to take part in 6 different benchmarks. We have focused our work in 4 of them described in the next sections.
TBM2 - Welcoming Visitors
Description
Lab Test
Toulouse Test
FBM1 - Object Perception
The goal is to analyse the capabilities of a robot in processing perception sensor data in order to extract information about observed objects.
Lab Test
Toulouse Test
FBM2 - Object Manipulation
This functional benchmark is focused at assessing the capabilities of a robot to correctly operate manual commands of the types that are commonly found on domestic appliances operated by humans as light switches.
Modelling
Model 1
Model 2
Final Prototype
Lab Test
<videoflash>hDI7Yruv-u4</videoflash>
Toulouse Test
FBM3 - Speech Understanding
The goal of this functional benchmark is to evaluate the ability of a robot to understand speech commands that a user gives in a home environment.
